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Guest Editors' Introduction 

,.... Journal of VLSI Signal Processing Systems 24, 127,2000. 
'l1li] © 2000 Kluwer Academic Publishers. Printed in The Netherlands. 

This issue contains a collection of seven selected papers on custom computing technology. In particular, it describes 
the latest advance in architectures, design methods, and applications of field-programmable devices for high­
performance reconfigurable systems. This journal is among the first to devote special issues to this topic (Volume 6, 
Number 2 and Volume 12, Number 5); recent special issues on configurable computing (IEEE Computer Magazine) 
and reconfigurable systems (lEE Proceedings), as well as the thriving conferences on similar themes such as FCCM, 
FPGA and FPL, demonstrate the recognition of its increasing importance. 

The first two papers are focused on architectures for custom computing. Schmit, Cadambi, Moe and Goldstein 
explain the idea of hardware virtualisation, and show how it can be supported by a pipeline architecture. In addition 
to providing high performance, their architecture is designed to benefit the hardware compiler and to take advantage 
of improvements in silicon technology. 

The second paper, by Lee, Singh, Lu, Bagherzadeh, Kurdahi, Filho and Alves describes the implementation of an 
architecture consisting of configurable logic resources and a RISC processor. Simulation results indicate that this 
system can achieve better performance than existing ones, particularly for data-parallel applications such as video 
compression and automatic target recognition. 

The next two papers cover design methods and tools for custom computing systems. Gokhale, Stone and 
Gomersall report in the third paper a pragma-based approach to programming architectures similar to that of 
Lee et. aI., which consists of configurable logic and a conventional processor. The pragma directives specify infor­
mation such as location of data and computation, which can be used by a compiler to produce a program for the 
conventional processor and a configuration bit stream for the configurable logic. 

The fourth paper, by Kaul and Vemuri, presents a method for synthesising reconfigurable designs based on 
temporal partitioning and design space exploration. Techniques such as block processing and iterative constraint 
satisfaction are used judiciously to optimise both large and small problems. 

The last three papers demonstrate the use of custom computing technology for various applications. Mencer, 
Semeria, Morf and Delosme indicate in the fifth paper how reconfiguration enables CORDIC units to be adapted 
to specific application requirements. An adaptive filter example is used to illustrate the reduction in latency and in 
area of the resulting pipelined implementation. 

The sixth paper, by Stogiannos, Dollas and Digalakis, describes an architecture for real-time continuous speech 
recognition based on a modified hidden Markov model. Of particular interest is the exploitation of reconfiguration 
for optimising the design which involves, for instance, adapting arithmetic precision and pipeline depth to run-time 
characteristics. 

The final paper, by de Garis and Korkin, explores a reconfigurable machine for implementing a genetic algorithm 
which contains up to 75 million neurons. This machine has been developed to control the real-time behaviour of a 
robot kitten. 

We thank the contributors to this special issue and the reviewers who completed the reviews under a tight schedule. 
The advice and encouragement of Professor Sun Yuan Kung are gratefully acknowledged. We also thank the staff 
at Kluwer, particularly Jennifer Evans, Carl Harris and Sharon Palleschi, for their assistance. 

Jeffrey Arnold 
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WayneLuk 
Imperial College of Science, Technology and Medicine, London 
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Intel, Santa Clara 
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Pipeline Reconfigurable FPGAs* 

HERMAN H. SCHMIT, SRIHARI CADAMBI AND MATTHEW MOE 
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA 

SETH C. GOLDSTEIN 
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA 

Abstract. While reconfigurable computing promises to deliver incomparable performance, it is still a marginal 
technology due to the high cost of developing and upgrading applications. Hardware virtualization can be used to 
significantly reduce both these costs. In this paper we describe the benefits of hardware virtualization, and show 
how it can be achieved using the technique of pipeline reconfiguration. The result is PipeRench, an architecture 
that supports robust compilation and provides forward compatibility. Our preliminary performance analysis on 
PipeRench predicts that it will outperform commercial FPGAs and DSPs in both overall performance and in 
performance normalized for silicon area over a broad range of problem sizes. 

1. Introduction 

Components in a signal processing system are typ­
ically implemented in one of two ways: (1) custom 
hardware or (2) software running on a processor. The 
advantage of implementation in hardware is that it can 
exploit the correct amount of parallelism in order to 
meet performance constraints while minimizing either 
the power or per-unit cost of the system. The chief prob­
lem with hardware implementations of signal process­
ing components is the time and money consumed by 
the many steps of the design process and the high non­
recoverable costs of fabrication. As a result of these 
high costs, hardware solutions are only feasible in sys­
tems that are either cost-insensitive, where the high 
development cost is tolerated, or systems that are pro­
duced in very high volume, where the development cost 
is absorbed by the lower per-unit cost of a hardware 
implementation. 

Field-programmable Gate Arrays (FPGAs) have en­
abled the creation of hardware designs in standard, 
high-volume parts, thereby amortizing the cost of mask 

'This work supported by DARPA, under contract DABT63-96-C-
0083. 

sets and significantly reducing time-to-market for hard­
ware solutions. However, engineering costs and de­
sign time for FPGA-based solutions still remain signifi­
cantly higher than software-based solutions. Designers 
must frequently iterate the design process in order to 
meet system performance requirements while simul­
taneously minimizing the required size of the FPGA. 
Each iteration of this process takes hours or days to 
complete. 

Another way to reduce the effective costs of hard­
ware design would be to frequently re-use hardware 
components in multiple systems. However, hardware 
designs are difficult to port to different process tech­
nologies. Furthermore, it is inefficient or impossible 
to re-use a component in a system that requires signifi­
cantly more or less performance than the original com­
ponent, because the parallelism exploited by a compo­
nent is fixed by the original designer. 

In this paper, we describe a technique, called 
hardware virtualization, that solves the problem of 
hardware re-use. We present techniques to virtualize 
pipe lined applications using existing FPGA architec­
tures. Based on the shortcomings of these techniques, 
we present a new method of hardware reconfiguration, 
called pipeline reconfiguration, that enables efficient 
hardware virtualization for pipelined applications. 
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1.1. Hardware Virtualization 

Hardware virtualization frees a designer to create a 
hardware design that exploits a very large amount of 
parallelism but also consumes a great deal of silicon 
area. This large hardware design can be emulated on 
a much smaller amount of physical hardware at a re­
duced level of performance. The emulation of the large 
design (or virtual hardware design) is accomplished by 
time-multiplexing programmable hardware. 

The closest analog to the ideal of virtual hardware is 
virtual memory in processor systems. In virtual mem­
ory, a small physical memory is used to emulate a 
large logical memory by moving infrequently accessed 
memory into slower cheaper storage media. This has 
numerous advantages for the process of software devel­
opment. First, neither programmers nor compilers need 
know exactly how much physical memory is present in 
the system, which speeds development time. Second, 
different systems, with different amounts of physical 
memory can all run the same programs, despite differ­
ent memory requirements. A small physical memory 
will limit the performance of the system, but if this per­
formance is unacceptable, the user simply buys more 
memory. Furthermore, since the price of memory is 
ever decreasing, newer systems will have more mem­
ory and therefore the memory performance of legacy 
software will improve until these programs fit entirely 
into the physical memory in the system. 

Similarly, an ideal virtualized FPGA would be capa­
ble of executing any hardware design, regardless of 
the size of that design. The execution speed would 
be proportional to the physical capacity of FPGA, 
and inversely-proportional to the size of the hardware 
design. Because the virtual hardware design is not con­
strained by the FPGA's capacity, generation of a func­
tional design from an algorithmic specification would 
be much easier than for a non-virtual FPGA and could 
be guaranteed from any legal input specification. Op­
timizing the virtual hardware design would result in 
faster execution, but would not be required to initially 
implement or prototype the application. Thus, hard­
ware virtualization enables FPGA compilers to more 
closely resemble software compilers, where unopti­
mized code generation is extremely fast, and where 
more compilation time can be dedicated to performance 
optimization when necessary. This accompanying 
benefit to hardware virtualization is called robust 
compilation. 

A family of virtualized FPGAs could be constructed 
that all share the ability to emulate the same virtual 

4 

hardware designs, but that differ in physical size. The 
members of this family with larger capacity will ex­
hibit higher performance because they emulate more of 
the virtual design at anyone time. Future members of 
this family, built in newer generations of silicon, could 
emulate virtual hardware designs at higher levels of 
performance without redesign, much like the way mi­
croprocessor families run binaries from previous gen­
erations without re-compilation. This benefit, which 
we call forward-compatibility, increases the return on 
investment in FPGA applications. In other words, the 
expense of generating (or purchasing) virtual hardware 
designs can be amortized for many systems with differ­
ent performance and cost requirements, over multiple 
generations of silicon. 

1.2. Pipeline Reconfiguration 

This paper focusses on the virtualization of hardware 
applications that can be formulated as a pipeline. A 
pipeline is a systolic array [1] where all data flow goes 
in one direction and there is no feedback. Figure 1 illus­
trates two stages of a FIR filter application transformed 
in such a way to meet these requirements. Transforming 
algorithms into pipelines is a well-understood prob­
lem. Some of the techniques for transforming algo­
rithms into pipelined implementations are presented 
in [2--4]. Fortunately, a large percentage of computa­
tionally challenging applications can be implemented 
as pipelines, including many in the domains of three­
dimensional rendering, signal and image processing, 

xli ] 0 

for (i=O; i < maxlnput; i++) { 
y[i] = 0; 
for (j = 0; j<TAPS; j++) { 

y[i] = y[i] + x[i-j] * W[j]; 

Figure 1. A pipelined FIR filter. All wires propogate in a single 
forward direction. One additional benefit to this design is that all 
multiplications have one constant operand, allowing further hard­
ware optimization. 
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Figure 2. Pipeline reconfiguration. An example of mapping a five stage pipeline onto a FPGA with the ability to hold two stages. 

and cryptography. Furthermore, extremely fine-grained 
pipelining is the most important technique used by re­
configurable systems to obtain high throughput [5]. If 
reconfigurable systems become widely used, they will 
be predominately applied to pipelineable applications. 

Pipeline reconfiguration is a new way to use the re­
configurability of FPGAs to virtualize pipelined appli­
cations. In pipeline reconfiguration, the configuration 
bits corresponding to each pipeline stage are brought 
into the executing FPGA fabric, one stage every cycle. 
When the FPGA fabric is fully populated by active 
pipeline stages, older pipeline stages are replaced by 
newer pipeline stages. 

Figure 2 shows an example of pipeline reconfigura­
tion for a five stage pipeline running on an FPGA with a 
capacity of two active pipeline stages. In this example, 
there are two results produced every five cycles. The 
FPGA "scrolls" through the pipelined application, and 
each run through the application takes five cycles and 
produces two results. Therefore the throughput of this 
implementation is two-fifths of the throughput possi­
ble without virtualization. The input and output beha­
vior of this implementation is modified from the non­
virtualized implementation. Input and output from the 
virtualized pipeline occurs in two-cycle bursts that re­
peat every five cycles. Ideally, virtualized FPGA should 
accomodate this burstiness without requiring the in­
volvement of the pipeline designer. 

In Section 2, we first present ways to virtualize 
pipelines using traditional FPGA reconfiguration tech­
niques. We quantify the latency and throughput of these 
techniques based on system parameters such as FPGA 
capacity and reconfiguration time. Then we compare 
these techniques to pipeline reconfiguration. We show 
that reconfiguration time is the most important fac­
tor in the performance of all these systems. We also 

show that pipeline reconfigurable devices avoid many 
of the other problems with traditional reconfiguration, 
including pipeline fill and empty penalties and memory 
capacity problems. 

In the remainder of the paper, we address a number 
of architectural challenges for pipeline reconfiguration 
FPGAs. Each section addresses one of the three signifi­
cant problems for these architectures. The first problem 
is reconfiguration time. For maximum performance, a 
pipeline reconfigurable FPGA should be able to config­
ure a computationally significant pipeline stage in one 
cycle. Section 3 describes the Pipe Rench architecture, 
which is designed to minimize the impact of reconfig­
uration time on performance. The second problem is 
how to control the pipeline reconfiguration at run-time 
in order to accurately virtualize hardware. Section 4 
presents the PipeRench configuration controller, which 
controls the movement of configuration data between 
storage and active FPGA fabric. The third problem, 
as illustrated in Fig. 2, is that the schedule of inputs 
and outputs to the pipeline is dependent on the virtual­
ization and must be determined at run-time. Section 5 
presents the PipeRench data controller, which performs 
these functions. Section 6 presents the estimated per­
formance of PipeRench for a set of pipelined FIR filters 
and compare to both commercial FPGAs and DSPs, 
and Section 7 presents some comparisons of pipeline 
reconfiguration to related work in FPGA and computer 
architecture. 

2. Pipeline Virtualization 

In this section, we evaluate methods to virtualize 
pipelined applications on standard FPGAs using con­
ventional reconfiguration, and we compare it to pipe­
line reconfiguration in terms of throughput and latency. 

5 
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2.1. Component-Level Reconfiguration 

Popular commercial FPGAs such as the Xilinx 4000 
family [6] and the Altera FLEX family [7] have ex­
clusive operational and configuration modes. There is 
no mechanism to allow simultaneous operation and 
configuration or even partial modification of a con­
figuration that is already loaded. The atomic unit of 
reconfiguration is the whole chip, therefore the chip is 
only capable of component-level reconfiguration. Con­
figuration data itself is fed into these FPGAs through 
a small number of 1/0 pins. Configuration times can 
therefore be thousands or hundreds of thousands of 
times longer than the operating cycle time of a de­
sign. As we will show, this long configuration time 
hurts throughput, latency and memory requirement for 
pipe lined application. Dynamic partial reconfiguration 
is a variation on component-level reconfiguration that 
allows the configuration memory to be written simul­
taneously with the operation of the chip. It was present 
in the Xilinx 6200 family [8]. This mode needs to be 
very carefully used, as it does not prevent the reconfig­
uration from interfering with the computation on the 
device. 

Another type of configuration mechanism is the 
multiple-context configuration, as discussed in [9-11]. 
This mechanism is similar to that in a standard FPGA, 
except that instead of having one configuration stored 
in the FPGA, n complete configurations are loaded into 
the FPGA. A global selection bus determines which one 
of the n configuration should be used during the cur­
rent cycle. Logical reconfiguration of the entire FPGA 
can be accomplished in a time comparable to the exe­
cution cycle time of the design, but the atomic unit of 
reconfiguration remains the whole chip. 

While multiple-context configuration solves config­
uration speed problem, it does have limitations. First, 
the process of switching contexts moves a large amount 
of configuration data in a short period of time. Context­
switching is therefore a power-intensive operation. 
Furthermore, the amount of "virtual" hardware emu­
lated by a multiple-context FPGA is limited to n times 
the physical hardware in that FPGA. Reconfiguration 
beyond n contexts must take place on a low-speed, 
narrow configuration bus. Finally, as we shall demon­
strate, component-level reconfiguration has significant 
disadvantages for virtualization of pipeline designs. 

2.1.1. The Application. The application we will ex­
amine is a very deeply pipelined application, such as a 
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Input Input 

FPGA#1 

FPGA #2 

Output Output 

Figure 3. Example pipeline application: Four stages implemented 
on two FPGAs. S = 4 and N = 2. 

high-order FIR filter implemented as shown in Fig. 1. 
Assume that this application has S identically-sized 
pipeline stages. Further assume that there are D bytes 
of data flowing between each stage of the filter every 
cycle, and between the filter input and output. This last 
assumption rarely holds in real pipelined applications. 
In most pipelines, the intermediate data between any 
two stages is much greater than D. This assumption 
greatly simplifies the following analysis, however. 

To implement this application, we have FPGAs with 
a fixed logic capacity. Assume that in order to stati­
cally implement the whole filter we would require N of 
these FPGAs, as illustrated in Fig. 3. If the clock cycle 
time of the FPGA, as determined by the most complex 
pipeline stage is T, then the throughput of the static, 
N -FPGA implementation of this filter is D I T bytes 
per second. To simplify the analysis, we will not con­
sider the time that it takes to configure this application 
initially, or to swap between different applications. 

2.1.2. Virtualization. We will use component-level 
reconfiguration to implement this filter in one FPGA of 
similar capacity. The theoretical maximum throughput 
of the I-FPGA implementation of this filter using Run­
Time Reconfiguration (RTR) is D I(NT) simply due to 
the reduction in computing hardware. We will examine 
the implementation of this filter using component -level 
reconfiguration in terms of its performance character­
istics and memory requirements. 
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Using component-level reconfiguration, the N dif­
ferent FPGA configurations from the N -FPGA design 
sequentially configure a single FPGA. This level of re­
configuration has also been called Global RTR [12]. 
The configuration controller loads one configuration, 
and allows the FPGA to perform operations on X words 
of data. It takes S / N cycles to get the first result from 
this configuration, and X-I cycles to get the remain­
ing results. Therefore, the time required to complete 
these computations, in seconds, is: 

T(X-l+S/N) (1) 

After this computation is complete, the system con­
troller reconfigures the FPGA with the next configura­
tion in the sequence as illustrated in Fig. 4. If it takes 
C cycles to reconfigure the FPGA, then the through­
put of this implementation can be described using the 
formula: 

DX 
NT(X-l+S/N+C) 

D 

T(N + S-;t + ~C) 

(2) 

(3) 

Throughput falls short of the ideal due to the pipeline 
penalty and a reconfiguration penalty. The pipeline 

Input 

reconfiguration 

FPGA 
Stage 3 

Output 

reconfiguration 

Figure 4. Component-level reconfiguration: Virtualization of 
pipelined application through reconfiguration of one FPGA with 
RAM to store intermediate results. 
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Figure 5. Throughput versus configuration time: Component-level 
configuration for various values of X. S = 100 and N = 10. This 
is a log-log plot. 

penalty, which is expressed in the (S - N)/ X term, 
is the penalty suffered for having to repeatedly fill 
and empty the pipeline between reconfigurations. The 
reconfiguration penalty, which is expressed in the 
(NC)/ X term, is caused by the non-zero reconfigu­
ration time of the device. The relationship of C, X and 
throughput is shown in Fig. 5. In this graph, S = 100 
and N = 10. The ideal performance ofthis implemen­
tation is D / (lOT). The value on the y-axis indicates 
how actual throughput compares to this ideal. For the 
moment, assume X is small. (Note: when X = 10 the 
pipeline is just filled, and then emptied.) When C is 
large, as in the case of standard FPGAs, the throughput 
is unacceptably low. When C is small, as is the case 
with the multiple-context FPGAs, the pipeline penalty 
limits throughput. 

Increasing X will increase the throughput of the im­
plementation regardless of C, but by increasing X the 
latency of the implementation is also increased. The 
latency for this implementation is: 

(4) 

The second problem with increasing X is that it is 
necessary to have enough memory to store all the data 
output from one block during reconfiguration so that it 
can be used as the input to the next block of the pipeline. 
The required amount of memory is D X. 

In addition, assuming input data arrives as a rate not 
greater than the throughput rate, any virtualized imple­
mentation will require a buffer to store inputs while the 

7 
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Table 1. Commercial FPGA configuration 
times (clock frequency: 33 MHz). 

Part 

XC4028EX [6] 

XC6216 [8] 

Config. time C 

8.35 ms 275,000 

92 fLS 3036 

lower stages of the pipeline are being executed. This 
buffer would also need to have a capacity of D X bytes. 

If X is very large, it will be difficult to meet these 
memory requirements on the same chip as the FPGA. 
If this is the case, the time required to access off-chip 
memory may increase T, degrading performance of the 
whole system. 

Table 1 shows typical values of C for two avail­
able Xilinx components using the fastest configuration 
mode available for that component. These results were 
computed assuming a modest operating frequency of 
33 MHz. Obviously, reconfiguration time is going to 
playa critical role in determining throughput, latency 
and memory requirements for applications which use 
these components. 

Multiple-context FPGAs have a C value of one cy­
cle or less. While this effectively eliminates the con­
figuration penalty, it does not reduce the effect of the 
pipeline penalty. In addition, multiple-context FPGAs 
only have a low C if the number of contexts held in 
the device is greater than N for the particular applica­
tion. If a multiple-context FPGAs can have inactive 
configurations modified while simultaneously execut­
ing another configuration, then it would be possible to 
extend the virtualization. But this would require X to 
be large enough to hid the reconfiguration time of the 
inactive configuration. 

2.2. Pipeline Reconfiguration 

Pipeline reconfiguration is a restricted form of local 
RTR [12], in which the pipeline is separated into S 
components, each corresponding to one pipeline stage. 
The FPGA can hold P of these pipeline stages, and the 
reconfiguration happens in an incremental manner. In 
order to normalize the capacity to the previous anal­
ysis, P = S / N. During each stage of the computa­
tion, we add one additional stage to the configuration, 
and remove (or overwrite) a stage if necessary to keep 
the amount of configuration within the capacity of the 
FPGA. Figure 2 illustrates this procedure. Reconfigu­
ration in this manner can be visualized as the scrolling 
of a window through the computation. 

8 

2.2.1. Virtualization. As with component-level re­
configuration, we will assume that the time it takes 
to execute a pipeline stage is T in seconds, and the 
number of FPGAs required to hold the whole applica­
tion is N. The number of execution cycles required to 
reconfigure the entire FPGA is C. Therefore, the time 
required to substitute a new pipeline stage into the con­
figuration is, ideally, T C / P. For one complete sweep 
through the application, S stages must be configured, 
requiring T C S / P = T C N seconds. Execution of the 
entire pipeline will take S cycles for the first element 
of data, and P - 1 cycles to process the remaining 
data in the pipeline. Therefore, the throughput of this 
implementation is equal to: 

DP 

T(S + P - 1 + CN) 

D 

T(N + 1 - * + (N2C)/S) 

The best-case latency of this implementation is: 

T(S + CN) 

(5) 

(6) 

(7) 

Figure 6 shows the relationship of throughput to the 
configuration cycles, C. For comparison, two curves 
for component-level reconfiguration with X = 100 and 
X = 10 are shown. Figure 7 shows the plots of latency 
for the same three implementations. These graphs show 
that when C is small, the pipeline reconfigured im­
plementation exhibits both high throughput and low 

-Component X ~ 100 -Pipeline Reconf. 

--Component X ~ 10 
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> ... ::s 
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J: 

1 E-02 Cl 
::s e 
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I-

1 E-03 +---,---,---~---4 
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Configuration Cycles (C) 

Figure 6. Throughput versus configuration time: Pipeline recon­
figuration compared to component-level configuration. S = 100 and 
N= 10. 
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Figure 7, Latency versus configuration time: Pipeline reconfigu­
ration compared to component-level configuration, S = 100 and 
N = la, 

latency. When C is large, the throughput exhibited 
by the pipelined reconfigured design exhibits behav­
ior very similar to the component-level reconfigured 
implementation with X = S / N. 

These graphs again demonstrate the importance of 
configuration cycles, C, in the throughput and latency 
equations. As C approaches zero, the throughput and 
latency of the pipeline reconfigured FPGA approach 
their respective theoretical optima. Component-level 
reconfigured implementations can only trade through­
put for latency, and can therefore never optimize both 
quantities simultaneously. 

Another advantage of pipeline stage reconfiguration 
is that all intermediate results remain stored in the ap­
propriate pipeline stage. There is no need for supple­
mental storage. The front-end storage to buffer arriv­
ing inputs must still be present, but it needs only store 
D S / N bytes, as opposed to D X bytes. 

The most important characteristic of incremental 
pipeline reconfiguration is that the presence of more 
hardware transparently results in higher throughput. 

Pipeline reconfiguration requires the ability to mod­
ify only a portion of the FPGA at a time. Therefore it 
is only possible using dynamically reconfigurable FP­
GAs, such as the Xilinx 6200 [8]. Using the Xilinx 
6200 to virtualize pipelines was described in [13]. The 
primary problem with using pipeline reconfiguration 
on an on-line reconfigurable FPGA like the XC6200 
series is that the relatively low bandwidth of the con­
figuration bus may make the effective value of C quite 
large. This limitation could be fixed by incorporating 
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an on-chip configuration cache and widening the con­
nection between the memory and the FPGA fabric. 

For these reasons, we have designed an FPGA archi­
tecture specifically for pipeline reconfiguration, which 
we call PipeRench. PipeRench is capable of configur­
ing a stage of the pipeline concurrently with the exe­
cution of the rest of the pipeline. Because of this con­
currency, C effectively equals zero (even though the 
entire device still requires T P to be configured), and 
the performance approaches the theoretical maximum . 
The architecture and operation of Pipe Rench will be 
described in the following section. 

3. PipeRench Architecture 

In order to achieve high-performance and forward­
compatibility, a pipeline reconfigurable device must 
have two architectural features. First, the architecture 
must support the configuration of a computationally 
significant pipeline stage every cycle, while concur­
rently executing all other pipeline stages in the FPGA, 
i.e. C = O. Second, the architecture must allow dif­
ferent pipeline stages to be placed in different abso­
lute locations in the physical device at different times. 
Only relative placement constraints should need to be 
observed, so that a pipeline stage can get its inputs 
from the previous stage and send its outputs to the sub­
sequent stage. No existing FPGA has these features. 
This section describes how these features are provided 
in PipeRench. 

In order to configure a pipeline stage every cycle, 
a pipeline-reconfigurable architecture requires a very 
high-throughput connection to the configuration mem­
ory that stores the virtual hardware design. Configu­
ration storage in PipeRench is on-chip and connected 
to the FPGA fabric with a wide data bus, so that one 
memory read will configure one pipeline stage in the 
fabric. This wide configuration word is written into one 
of many physical blocks in the FPGA fabric. We call 
these blocks stripes, and they define the basic unit of 
reconfiguration in the architecture. We use the word 
stripe to describe both the physical structures to im­
plement the functionality of a pipeline stage (a physi­
cal stripe), and the configuration word itself (a virtual 
stripe), which mayor may not be resident in a physi­
cal stripe. Since a virtual stripe can be written into any 
physical stripe, all physical stripes must have identical 
functionality and interconnect. 

Designing the stripe to provide adequate function­
ality for a wide range of applications with a limited 

9 



www.manaraa.com

136 Schmit et al. 

Figure 8. Generalized stripe functionality. 

number of configuration bits is a critical and complex 
task, the description of which is beyond the scope of 
this paper. In general, the functionality within a stripe 
can be described as a combinational function of three 
inputs: the registers within that stripe, the registers 
from the previous stripe, and a set of global intercon­
nects, as shown in Fig. 8. The combinational function 
f () is defined by the configuration bits in the virtual 
stripe. 

Note the feedback path from the register in a stripe 
back into the combinational function f ( ) . If this path 
is used by an application, the register bits that are fed 
back contain state information that must be maintained 
by the device. We call this information stripe state. 

Pipe Rench is currently envisioned as a coprocessor 
in a general-purpose computer (see Fig. 9). It is a mem­
ory mapped device, and has access to the same memory 
space as the primary processor. All the virtual stripes 

Stripe 1: Stripe 1: 

Stripe 2: Stripe 2: 

Stripe 3: Stripe 3: 

Stripe 4: Stripe 4: 

Stripe 5: Stripe 5: 

cycte t cycle t+ l 

(a) Shifting Configuration 

Figure 9. Shifting and stationary configuration. 
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for all the applications that are to run on PipeRench 
are stored in main memory. A PipeRench "executable" 
consists of configuration words, which control the fab­
ric, and data controller parameters, which determine 
the application 's memory read/write access pattern. 
The processes of loading the configuration memory 
and data controllers from off-chip, and configuring the 
fabric from the configuration memory, are the respon­
sibilities of the configuration controller, described in 
Section 4. 

Figure 10 illustrates two possible layouts for physi­
cal stripes. In Fig. lO(a), the virtual stripes move ev­
ery cycle into a different physical stripe. This has two 
advantages: the interconnect between adjacent virtual 
stages is very short, and new virtual stripes are written 
into only one physical stripe (on the bottom). The chief 
disadvantage with this layout is that all the configura­
tion data must move every cycle. This is a tremendous 
power sink, and it reduces performance because now 
the clock cycle must include the time it takes for the 
configuration data to move and settle. 

An alternative layout is illustrated in Fig. lOeb), 
which shows the physical stripes arranged in a ring, 
allowing the configuration to remain stationary. There 
are two disadvantages to this approach. First, it requires 
configuration data to be loaded anywhere in the fabric. 
Second, there is a longer worst-case interconnect be­
tween adjacent stripes (at the bottom and the top). But 
because only one stripe needs to be reconfigured, it is 
possible to configure that one stripe while simultane­
ously executing the application in the remaining stripes. 
In Fig. IO(b), five stripes are computing, despite the 

cycle I cycle t+l 

(a) Stationary Configuration 
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Figure 10. Architecture overview. Sold lines are data paths, dashed 
lines are address and control paths. 

fact that there are six physical stripes in the fabric. We 
believe that the disadvantages of this approach are out­
weighed by the power and performance advantages. 

There are three types of interconnect necessary for 
a stripe: intra-stripe, local inter-stripe and global inter­
stripe. Intra-stripe routing is used to interconnect the 
elements of a stripe to create the functionality of the 
pipeline stage. 

Local inter-stripe interconnect receives inputs from 
the previous stripe and sends outputs to the next stripe 
in the pipeline. Since this is a pipelined application, and 
each stripe contains a pipeline stage, there is no need 
for non-registered interconnect between non-adjacent 
stripes. It is essential that all local inter-stripe inter­
connects be registered, and that the configuration bits 
from one stripe cannot change anything in the path be­
tween that stripe's registers and its interconnection to 
the following stripe. For example, in Fig. 10, the com­
putation in stage 2 at cycle t + I requires the result 
of the computation in stage 1 at cycle t. But in cycle 
t + 1 the configuration for stage 1 is being removed 
from the fabric or overwritten. If a change to the con­
figuration effects the ability of stage 2 to see stage 1 's 
last computation, the results can not be guaranteed. 

Global inter-stripe interconnect is used to get 
operands to any input stripe, get results from any out­
put stripe, and to save and restore the stripe state when 
it is removed or inserted from the FPGA fabric. The 
stripe state may also be initialized using the restore 
functionality. 

At the end of each global data bus is a data con­
troller, which handles processing of the inputs and out­
puts from the application. Because the sequence of data 
writes and reads from the fabric depends upon the num­
ber of physical stripes in the FPGA and the number or 
virtual stripes in the application, the data controller 
must do run-time scheduling of memory accesses. In 
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order to provide the necessary memory bandwidth, the 
data controllers may contain memory caches to take 
advantage of data locality, or FIFOs to deal with the 
"bursty" memory traffic that is caused by virtu ali zing 
the application. All the data controllers access off-chip 
memory through a shared memory bus control unit. 
This unit arbitrates access to a single memory bus. The 
memory bus control unit is also the path used to load 
the configuration memory. 

Two of the data controllers have additional function­
ality that allow them to deal with the problem of saving 
and restoring a stripe state when it is removed and later 
returned to the FPGA fabric. The physical stripes in 
PipeRench are constructed to have a special path from 
a global bus into and out of the registers on that stripe. 
This path is enabled when the stripe contains state that 
would be lost if that stripe was removed from the fab­
ric. The state information for each stripe is stored in an 
on-chip state memory. This memory has one location 
for each location in the configuration memory, and can 
therefore hold the state for any application that can fit 
into the configuration memory. In order to keep track 
of which virtual stripe is placed in each physical stripe, 
there is an Address Translation Table (ATT in Fig. 9) 
with one entry per physical stripe. 

4. Configuration Management 

In this section we describe how the virtual stripes of 
an application are mapped to the physical stripes of the 
hardware fabric. Since pipelined reconfigurable archi­
tectures can map an application of any size to a given 
physical fabric, the configuration controller must han­
dle the time-multiplexing of the application's stripes 
onto the physical fabric, the scheduling of the stripes, 
and the management of the on-chip configuration mem­
ory. Additionally, the controller is the interface between 
the host, the configuration memory, the fabric, and the 
data controllers. 

We assume the interface between the FPGA and the 
CPU host resembles a typical slave co-processor, like 
a floating-point unit. After a general description appli­
cable to all pipelined reconfigurable architectures, we 
present the controller used by PipeRench. The interac­
tion between the configuration controller and the data 
controller is discussed in Section 5. 

4.1. Characteristics of a Configuration Controller 

We break down the tasks of managing the configura­
tions into four sub-tasks: interfacing (between the host 
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and the fabric), mapping (the configuration words to 
the fabric), scheduling (time-multiplexing and manag­
ing virtualization), and managing the on-chip configu­
ration memory. 

The controller manages the interface between the 
CPU host and the fabric. At the very least the interface 
must allow the host to initiate execution of a particu­
lar configuration, and allow the FPGA co-processor to 
indicate that it has completed execution. If the con­
figuration information is stored in main memory, it is 
possible to specify the application by giving the main­
memory address of the first configuration word of an 
application, the number of iterations to be performed, 
and the main-memory addresses for data input and out­
put. The co-processor could signal the completion of 
the application through an interrupt or a status register 
that is polled by the CPU. 

The mapping task involves loading the virtual stripes 
into the on-chip configuration memory and the fabric 
itself. If the application fits in the fabric, the task is 
greatly simplified. If, however, the application is larger 
than the available hardware, stripes need to be swapped 
out during execution. Therefore, given an applica­
tion, the controller must detect the case when virtual­
ization is required and time-multiplex the application 
appropriately. 

The controller schedules individual stripes of an ap­
plication to ensure that each virtual stripe is present 
in the fabric long enough to process all the data: if a 
virtual stripe needs to be swapped out prematurely, it 
is reloaded later. Figure 11 shows the extent of time 
that the first and last virtual stripe spend in the fabric 
for the virtualized and the non-virtualized case. In the 
virtualized case, i.e., V > P where V is the number of 
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virtual stripes and P is the number of physical stripes, 
the number of active cycles for each stripe has a plateau 
of length (V - P + 1) which occurs when the stripe is 
swapped out of the physical fabric. Each time a virtual 
stripe is loaded into the fabric it remains there for at 
most P - 1 active cycles. The controller thus has to 
swap stripes in and out at regular intervals. Points FO 
and FI, and LO and L1 in Fig. 11 indicate the initial 
loading and completion points of the two stripes; the 
stripes are swapped out at the points F2 and L2, and 
swapped back in at F3 and L3 respectively. 

Finally, the controller must use the on-chip configu­
ration memory efficiently, since going off-chip to fetch 
a configuration word is time-consuming, and may lead 
to pipeline stalls. If an application or multiple applica­
tions have common configuration words, these may be 
shared; shared configuration words need appear only 
once in the on-chip memory. Thus space utilization is 
enhanced as are the chances of fitting an application in 
the on-chip memory. 

4.2. PipeRench's Configuration Controller 

Here we present our implementation of a configuration 
controller for PipeRench. For the sake of simplicity, 
we omit discussion of pipeline stalls and present a con­
troller that loads the entire application into the on-chip 
memory before beginning execution. 

The CPU initiates the execution of an application on 
Pipe Rench by loading a set of control registers with 
the starting address of the executable in main mem­
ory, and the number of iterations to perform using this 
executable. 

vso VS7 

~' /" F2 L2 

LZ L3 

5 10 15 20 

Time 

(b) 

Figure 11. Active cycles example: Variation of the active cycles with time for (a) the non-virtualized and (b) the virtualized case. (a) Shows 
the case for 8 virtual stripes on 8 physical stripes while (b) shows the case for 8 virtual stripes on 5 physical stripes. The two curves represent 
the first and the last virtual stripes (VSO and VS7). 
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Figure 12. Configuration word. The structure of a configuration 
word consisting of the configuration data that goes to the fabric, the 
next address field, and a set of flags. The flags comprise indicators 
for the first and the last virtual stripes, and other fields described in 
Section 5. 

In PipeRench, an "executable" is composed of a se­
ries of configuration words each of which includes 
three fields: fabric configuration bits, a next-address 
field, and a set of flags used by the configuration and 
data controllers (see Fig. 12). The flags relevant to 
the configuration controller are the first- and the last­
virtual-stripe flags. The controller uses these to deter­
mine the iteration count and the number of stripes in the 
application. 

The general architecture of the controller is shown 
in Fig. 13. When the IDLE line is asserted, the host can 
start a new application by specifying a start address and 
the number of iterations. The controller then deasserts 
the IDLE line until the application has completed the 
number of iterations specified. 

4.2.1. Mapping the Configuration. Each virtual 
stripe in an application includes a next-address field 

.. , ...... 
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which is used by the controller to find and then load 
the next stripe in the application. When the stripe is 
placed in the on-chip configuration memory, the next­
address field is translated to an address in the on-chip 
memory. A record of this translation is maintained in 
a fully-associative on-chip Stripe Address Translation 
Table (SATT), shown in Fig. 13. Fortunately, the num­
ber of entries in the SATT is small compared to the size 
of the application, therefore it will not be on the critical 
path. 

A counter is used to maintain the number of vir­
tual stripes in the application. If the number of virtual 
stripes is larger than the number of physical stripes in 
the fabric, the controller will time-multiplex the appli­
cation onto the fabric. 

4.2.2. Configuring Physical Stripes. On every cycle 
the controller enables a specific physical stripe to be re­
configured. PipeRench uses a counter modulo the num­
ber of physical stripes to sequentially generate physical 
stripe addresses. This simple method automatically en­
sures that if the application is too big to fit in the fabric, 
configured stripes are overwritten and the hardware is 
virtualized over the entire physical fabric. 

4.2.3. Tracking the Iterations. Once stripes are over­
written, they may need to be reloaded since all the re­
quested iterations may not have been performed (i.e., 
each stripe may not have processed all the data re­
quired). In order to do this and execute an application 
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Figure 13. Configuration controller architecture: The configuration controller, and its interface to the host, main memory, on-chip memory, 
and the fabric. 
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Figure 14. Virtualization VO: Comparing input/output and state management with no virtualization and virtualization. (a) With enough 
hardware (no virtualization) there is no need to save state and input/output timing remain unchanged, (b) with less than enough hardware 
(virtualization) a stripe's state must be saved and input/output timing changed. 

for a certain number of iterations, we use two of the 
flag bits: the first-virtual-stripe flag and the last-virtual­
stripe flag. 

When the first virtual stripe is loaded into the fab­
ric, the controller records the cycle it was loaded. By 
monitoring this record during loading and swapping 
stripes, it can ascertain the number of cycles the first 
virtual stripe has spent in the fabric (i.e., the number of 
iterations it has executed). In addition to monitoring 
the first stripe, the controller also monitors when the 
last virtual stripe is swapped into the fabric. 

Using the first and the last stripe, the iteration count 
may be managed in the following manner: when the 
first virtual stripe completes its required number of it­
erations, it does not need to be reloaded ever again. 
Hence the loading of the application can now stop (and 
a new application may be started) after loading the last 
virtual stripe. 

4.3. Summary 

In this section, we analyzed and described the four main 
sub-tasks of configuration management for pipelined 
reconfigurable architectures: interfacing, mapping, 
scheduling and memory utilization. In our implemen­
tation of the configuration controller for Pipe Rench, we 
use a next-address field to access configuration words 
from memory, use a counter (modulo the number of 
physical stripes) to generate the physical stripe ad­
dresses, and identify the first and last stripes by flags 
in order to keep track of iterations. This simple con­
figuration controller can map an application with any 
number of virtual stripes onto a fabric with a given 
physical size. 

5. Data Management 

Managing the flow of data for virtualized pipelines is 
one of the main challenges in designing a pipelined 
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reconfigurable architecture. Virtualization can cause 
disruptions in the flow of data, requiring the explicit 
management of execution state. The design goal in 
PipeRench's to make these disruptions transparent to 
the designer. This section presents our data controller 
architecture and shows how it manages the virtualiza­
tion of a convolution kernel. 

When there is no virtualization, there is no need to 
store and restore state or change input/output timing. 
Figure 14(a) shows the execution of a simple pipeline 
with no virtualization. Though PEs may contain func­
tions of their own registered outputs, there is no need to 
save state because all the configurations remain in the 
fabric. Also, inputs and outputs are needed every cycle 
since the stripes that need input and output remain in 
the fabric. 

However, when such pipelines are virtualized, the 
stripe state may need to be remembered and the in­
put/output timing changed. Figure 14(b) shows the 
execution of the same pipeline, which now requires 
virtualization since there are only three physical stripes 
for the four virtual stripes. When stripes are functions 
of their own registered outputs, the state of that stripe 
must be stored while its configuration is not in a physi­
cal stripe and restored when it is returned to the fabric. 
Furthermore, input and output are only needed when 
the stripes that consume or produce data are in the fab­
ric. In the example in Fig. 14, input (output) is only 
needed when the first (last) stripe is in the fabric. 

5.1. Data Controller Architecture 

The data controller architecture consists of four sepa­
rate data controllers (see Fig. 9). Each controller man­
ages one global bus that is dedicated to either state 
storing, state restoring, data input or data output per ap­
plication. When dedicated to storing or restoring state, 
the data controller interfaces between the fabric and 
the state memory. When a controller is dedicated to 
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Figure 15. StorelRestore. Restoring (a) and storing (b) state between fabric, configuration memory, state memory and ATT. 

data 10, the controller interfaces between the fabric and 
the memory bus controller. To determine which task 
each data controller performs, controllers contain con­
trol registers which describe functionality. The control 
registers specify the beginning data address, stride, and 
whether that bus is used for input, output, store, or 
restore. 

5.1.1. Managing Stripe State. When needed, a 
stripe's state is kept in the state memory (see Fig. 16), 
which is addressed differently for stores and restores. 
During a restore, which takes place in the configura­
tion cycle, the state memory address is the same ad­
dress as that used to access the configuration memory. 
As Fig. 15(a) shows, when a stripe's configuration is 
written into the fabric, that stripe's state and flags are 
also written. In order to remember the address in the 
state memory for that stripe's state, the configuration 
memory address is written into the Address Translation 
Table (ATT). When storing state, the ATT supplies the 
state memory address, as shown in Fig. 15(b). 

5.1.2. Managing Data 10. When managing In­
put/Output, configured stripes communicate with the 
input and output controllers through flags, and these 
controllers communicate via address and control logic 
with the memory bus controller. Each controller re­
ceives the flag bits that show the read and write data re­
quests for its corresponding bus (Read Flags and Write 
Flags in Fig. 12). The flag bits are part of each stripe's 
control word and specify if that stripe reads or writes 
to each of the four buses. The data controllers receive 
these flag bits from the fabric and generate the nec­
essary address and control lines for the memory bus 
controller (see Fig. 16). Therefore, when a stripe is 
configured to produce data on a bus, the controller 
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Figure 16. Data controller architecture. Solid lines are data and 
dashed lines are address or control. 

generates the appropriate signals to write the data (like­
wise for a read). 

The data controller is also responsible for generat­
ing the addresses for both the input and output data 
streams. We currently can generate addresses that are 
affine functions of the loop index. The starting address 
is supplied by the host when the application starts and 
the stride is specified as part of the application. When 
the fabric performs a read or write, the next address is 
in the sequence is generated by incrementing the cur­
rent address by the stride. We are examining ways of 
generating addresses for a richer set of applications. 

5.2. Example: Convolution Data Flow 

To make the function of the data controllers more con­
crete, we now illustrate how the application presented 
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Figure 17. Systolic convolution. (a) Each stage's function contains a double pipelined X input, single pipelined Y output, and stationary weight 
W, (b) example of the data flow for this implementation. The dashed lines indicate how Y is accumulated as time progresses. The dashed arcs 
indicate state store and restore. 

in Fig. 1 is virtualized on PipeRench. In the terminology 
presented in Kung [1], this is a strictly systolic imple­
mentation with the X input stream doubly pipelined. In 
[14], we also present a semi-systolic implementation 
of this same application, and illustrate the significant 
difficulties caused by an operand broad-cast over mul­
tiple stripes. For this reason, PipeRench current only 
supports strictly systolic implementations. 

Figure 17 shows a fully systolic implementation of 
the application, which contains a single pipelined out­
put Y, a double pipelined input X, and stationary weight 
W. In this example, we will assume that the function­
ality for one tap of this convolution can be supplied 
by one stripe. The X's enter the pipeline from the first 
stage. Every cycle a new X with a higher index is in­
serted. The data controller for this bus addresses the 
data memory from the beginning address supplied in 
its control registers. The data is driven on the bus and 
is read by the first stripe. When the first stripe asserts 
the corresponding read flag, the data controller incre­
ments the memory address by the contents in the stride 
register (in this case, 1) and readies the next piece of 
data on the bus. A controller for the pipelined Y output 
is similar, with the exception that it monitors the write 
flags and writes the data into memory instead. 

In this example, some of the data in a stripe needs its 
state stored or restored. The double pipelined X con­
tains state that needs to be stored and restored; the 
registered feedback is from the first register delay to 
the second register delay in the same stripe. The single 
pipe lined Y value does not require storing or restoring 
since the stripe's functions do not contain registered 
feedback. 

16 

5.3. Summary 

Data management should be transparent to applications 
no matter how many physical stripes are present and 
virtual stripes are needed. Our data controller archi­
tecture handles this transparency with communication 
between the stripes in the fabric and the data controllers. 
Through several flags in the control word of each stripe, 
the data controllers can tell what is needed by the fabric 
and the status of execution. 

6. Performance 

In this section we compare the expected performance 
of our architecture against commercial FPGAs with 
similar processing technology and area, and against 
commercial DSP processors on FIR filters of varying 
sizes. 

Based on our design of the PipeRench prototype in 
0.5 micron silicon, we believe that in 50 mm2 of 0.35 
micron silicon it is possible to have 28 stripes, each 
with a 128-bit wide datapath. Expected cycle time for 
this datapath is 100 MHz. An SRAM for configuration 
memory will consume another 50 mm2 of area, and will 
store 256 configuration words of 768 bits each. One 
128-bit wide stripe is capable of holding one tap of a 
8-bit FIR filter with 12-bit coefficients. The total area 
for this chip would be 100 mm2 . 

As shown in Fig. 18 the virtualization enables an 
FIR filter with less than 29 taps to run at the full clock 
rate of 100 MHz. Larger filters demonstrate a graceful 
degradation of performance out to around 256 taps, at 
which point the on-chip configuration storage is full. 
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Figure 18. Performance on 8-bit FIR filters. PipeRench, Xilinx 
FPGA using parallel and serial arithmetic and Texas instruments 
DSP. 

For larger filters, smart cache management techniques 
can be used to continue the degradation, albeit at a 
steeper rate due to the need to fetch some configuration 
data from off-chip. 

Based on measurements of Xilinx FPGAs built in 
0.35 micron technology [15], 100 mm2 of area is equiv­
alent to about 1750 CLBs. Given this amount of logic, 
and using parallel distributed arithmetic, it is possible 
to create filters that run at around 60 MHz and have up to 
48 taps [16]. More than 48 taps will not fit. No widely 
known techniques can increase the throughput of this 
implementation. To implement larger filters, it is nec­
essary to transform the algorithm to use a more efficient 
arithmetic. Using double-rate distributed arithmetic, it 
is possible to construct filters with up to 260 taps given 
the same amount of silicon [16]. Due to the serial na­
ture of these implementations however, the maximum 
sampling rate of these filters is 14 MHz. There is a 
larger space of filters that are unfulfilled by this solu­
tion. The discontinuities in this graph make it diffi­
cult to compute the cost/performance of the device. In 
addition, the discontinuities represent a significant re­
design effort. The two types of arithmetic used in this 
case require complete new run through the synthesis 
and physical design tools. 

The Texas Instruments TMS320C6201 [17] is a 
commercial DSP which runs at 200 MHz and con­
tains two 16- by 16-bit integer multipliers. For filters 
with less than four taps, the high clock speed of this 
device yields the highest possible performance. This 
performance decays rapidly with an increasing num­
ber of taps due to the presence of only two multipliers. 
PipeRench exhibits a very similar curve to this DSP, 
only the capacity of the device is significantly higher. 
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PipeRench can hold about 29 taps until the hardware 
is time-multiplexed. Due to the word-oriented func­
tional units in PipeRench, the maximum clock rate 
is significantly higher than the FPGA. And like the 
DSP, the degradation in performance has no large dis­
continuities, and requires no re-design to adapt to less 
hardware. 

7. Related Work 

PipeRench provides robust compilation by allowing an 
application to transparently exceed the logical capac­
ity of the physical FPGA at runtime. The Virtual Wire 
"softwire" compiler [18] provided a degree of robust­
ness by virtualizing the 1I0s between FPGAs in a multi­
FPGA logic emulation system at compile time. The 
challenge faced by most FPGA-based logic emulators 
is that the input netlist is usually too large to fit into 
one FPGA. The netlist must be partitioned across mul­
tiple devices and meet FPGA I/O constraints. When 110 
constraints are violated, the "softwire" compiler time­
multiplexes different logical 1I0s on a single physical 
110. The 110 constraint violation is fixed by reducing 
performance. PipeRench is a single-chip FPGA com­
puting devices, not a logic emulator. Our objective is 
to deal with large logical netlists, not by overflowing 
into other devices and dealing with 110 constraints, but 
by time-multiplexing the on-chip logic to emulate the 
desired design at a degraded level of performance. 

Multiple context FPGAs [9-11,19], have been pro­
posed as a way to create logically larger devices through 
rapid reconfiguration. These architectures do allow idle 
logic to be stored outside of the active FPGA fabric, and 
allow the active fabric to change very rapidly. They can 
be used to virtualize hardware, but because they can­
not be incrementally reconfigured they suffer from the 
pipeline fill and empty penalty. Furthermore, the task 
of compilation for these architectures is more complex 
than it is for a flat, single context FPGA, because the 
compiler needs to place and route multiple, interdepen­
dent contexts simultaneously. PipeRench simplifies the 
compilation process by allowing the compiler to create 
a pipeline of unbounded length. The only real design 
constraint is making the individual pipeline stages fit 
into PipeRench stripes. 

A form of pipeline reconfiguration for commercial 
FPGAs, such as the XC6200, has been described [13]. 
The XC6200 cannot be reconfigured at the same rate 
as the data flow, and it is therefore necessary to seg­
ment the pipeline. PipeRench has the configuration 
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bandwidth necessary to support pipeline reconfigura­
tion, and includes mechanism for control of the con­
figuration stream and data stream with respect to the 
virtualization. 

Other devices are capable of partial, run-time re­
configuration, such as GARP [20], NAPA [21], and 
Chimeara [22], and could potentially operate using 
pipeline reconfiguration. Exploration of the interface 
between FPGAs and CPUs has been investigated in 
[20-24]. 

PipeRench also addresses many of the problems 
faced by other computer architectures. The most­
insightful comparisons are to MMX, VLlW, and vector 
machines. 

The mismatch between application data size and na­
tive operating data size has been addressed by extend­
ing the ISAs of microprocessors to allow a wide data 
path to be split into multiple parallel data paths, as in 
Intel's MMX [25]. Obtaining SIMD parallelism to uti­
lize the parallel data paths is non-trivial, and works 
only for very regular computations where the cost of 
data alignment does not overwhelm the gain in paral­
lelism. Pipe Rench has a rich interconnect to provide 
for alignment and allows PEs to have different config­
urations so that parallelism need not be strictly SIMD. 

VLlW architectures are designed to exploit dataflow 
parallelism that can be determined at compile time [26]. 
VLlWs have extremely high instruction bandwidth de­
mands. A single PipeRench stripe is similar to a VLlW 
processor using many small, simple functional units. 
In PipeRench, however, a stripe remains configured 
for a number of cycles, and the same computation is 
performed on a larger data set, thereby amortizing the 
instructions over more data. 

The instruction bandwidth issue has been addressed 
by vector machines such as the TO [27] and IRAM [28]. 
In many ways, PipeRench is similar to vector machines 
with an unbounded vector size and with VLlW func­
tional units. The problem with classical vector archi­
tectures is the vector register file is a physical or logical 
bottleneck that limits scalability. Allocating additional 
functional units in a vector processor requires addi­
tional ports on the vector register file. The physical 
bottleneck of the register file can be ameliorated by 
providing direct forwarding paths to allow chained op­
erations to bypass the register file, as in the Cray -1 [29]. 
PipeRench eliminates these constraints by eliminating 
the vector register file. All connections in PipeRench 
are local, and the chaining is explicit. Therefore, the 
number of functional units can grow without increasing 
the complexity of the issue and control hardware. 
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8. Conclusions 

Pipeline-reconfigurable FPGAs provide the high­
performance associated with FPGAs for DSP appli­
cations. In addition, they provide the forward­
compatibility and robust compilation that is associated 
with more traditional processors. We believe these ben­
efits enable the development of FPGAs that have the 
performance advantages for DSP applications associ­
ated with current FPGAs, and the ease and economy of 
development associated with microprocessors. 

Managing the configuration and data flows is a 
significant issue in the design of these devices. 
PipeRench's configuration controller performs run­
time mapping and scheduling of configuration trans­
fers, interfaces to the host processor, and manages 
the configuration storage. The data controllers provide 
mechanisms for storing and restoring of state, as well 
as access to operand data for a variety of systolic and 
semi-systolic pipeline implementations. 
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Abstract. In this paper, we describe the implementation of MorphoSys, a reconfigurable processing system 
targeted at data-parallel and computation-intensive applications. The MorphoSys architecture consists of a recon­
figurable component (an array of reconfigurable cells) combined with a RISC control processor and a high bandwidth 
memory interface. We briefly discuss the system-level model, array architecture, and control processor. Next, we 
present the detailed design implementation and the various aspects of physical layout of different sub-blocks of 
MorphoSys. The physical layout was constrained for 100 MHz operation, with low power consumption, and was 
implemented using 0.35 p.,m, four metal layer CMOS (3.3 Volts) technology. We provide simulation results for the 
MorphoSys architecture (based on VHDL model) for some typical data-parallel applications (video compression 
and automatic target recognition). The results indicate that the MorphoSys system can achieve significantly better 
performance for most of these applications in comparison with other systems and processors. 

1. Introdnction 

Reconfigurable computing systems are systems that 
consist of some reconfigurable hardware along with 
software programmable processors. The reconfig­
urable component provides the ability to configure or 
customize the system for one or more applications [1]. 
In the ideal case, a reconfigurable system delivers high 
performance typical of ASIC devices and also provides 
the flexibility of a general-purpose processor (i.e. it can 
execute a wide range of applications). Conventionally, 
field programmable gate arrays (FPGAs) [2] are the 
most common devices used for implementing recon­
figurable components. This is because FPGAs allow 
designers to manipulate gate-level devices such as flip­
flops, memory and other logic gates. However, FPGAs 
have certain disadvantages such as low logic density 
and inefficient performance for word-level datapath 
operations. Hence, many researchers have proposed 
prototypes of reconfigurable computing systems that 
employ non-FPGA reconfigurable components such as 

DPGA [3], Garp [4], PADDI [5], MATRIX [6], RaPiD 
[7], REMARC [8], and RAW [9]. 

In this paper, we describe the implementation of 
MorphoSys, which is based on a novel model of a re­
configurable computing system. This model is aimed 
at applications that feature high data-parallelism, regu­
larity, and are computation-intensive. Some examples 
of these applications are video compression, graphics 
and image processing, and DSP transforms. The im­
plementation of MorphoSys operates at 100 MHz, and 
the entire design has a silicon area of about 200 sq.mm. 

1.1. Organization of Paper 

Section 2 introduces the system architecture and com­
ponents of MorphoSys. A cross-section of related work 
is briefly described and contrasted with MorphoSys ar­
chitecture in Section 3. The physical implementation 
aspects of the MorphoSys system, with its focus on 
clock cycle of 10 ns (for operating freq. of 100 MHz) 
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and low power consumption, are presented in Section 4. 
Section 5 gives an overview of the current program­
ming and simulation environment for MorphoSys. 
Next, in Section 6, we provide performance estimates 
for a set of applications (video compression and ATR) 
that have been mapped to MorphoSys. Finally, we list 
some conclusions in Section 7. 

2. MorphoSys Architecture 

The MorphoSys design model incorporates a reconfig­
urable component (to handle high-volume data-parallel 
operations), on the same die with a general-purpose 
RISC processor (to perform sequential processing and 
control functions), and a high bandwidth memory 
interface. 

2.1. MorphoSys Components 

The MorphoSys architecture comprises five major 
components: the Reconfigurable Cell Array (RC 
Array), control processor (TinyRISC), Context Mem­
ory, Frame Buffer and a DMA Controller. Figure I 
shows the organization of the integrated MorphoSys 
reconfigurable computing system. 

RC Array. In the current implementation, the recon­
figurable component is an array of reconfigurable cells 
(RCs) or processing elements. Considering that tar­
get applications (video compression, etc.) tend to be 
processed in clusters of 8 x 8 data elements, the Re-

Context 
-.-y 

(2x8x18x32bil11) 

Figure 1. MorphoSys integrated architectural model. 
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configurable Cell array (RC Array) has 64 cells in a 
two-dimensional matrix. This configuration is chosen 
to maximally utilize the parallelism inherent in an ap­
plication, which in turn enhances throughput. 

The RC Array follows the SlMD model of compu­
tation. All RCs in the same row!column share same 
configuration data (context). However, each RC op­
erates on different data. Sharing the context across a 
row/column is useful for data-parallel applications. The 
RC Array has an extensive three-layer inter-connection 
network, designed to enable fast data exchange be­
tween the RCs. This results in enhanced performance 
for application kernels that involve high data move­
ment, for example, the discrete cosine transform (used 
in video compression). 

Each RC incorporates an ALU-multiplier, a shift 
unit, input muxes and a register file. The multiplier is 
included since many target applications require integer 
multiplication. In addition, there is a context register 
that is used to store the current context and provide 
control!configuration signals to the RC components 
(namely the ALU-multiplier, shift unit and the input 
multiplexers ). 

TinyRISC Control Processor. Since most target ap­
plications involve some sequential processing, a RISC 
processor, TinyRISC [10], is included in the system. 
This is a MIPS-like processor with a 4-stage scalar 
pipeline. It has a 32-bit ALU, register file and an on­
chip data cache memory. This processor also coordi­
nates system operation and controls its interface with 
the external world. This is made possible by addition 
of specific instructions (besides the standard RISC in­
structions) to the TinyRISC ISA. These instructions 
initiate data transfers between main memory and Mor­
phoSys components, and control execution of the RC 
Array. 

Frame Buffer and DMA Controller. The high par­
allelism of the RC Array would be ineffective if the 
memory interface is unable to transfer data at an ade­
quate rate. Therefore, a high-speed memory interface 
consisting of a streaming buffer (Frame Buffer) and 
a DMA controller is incorporated in the system. The 
Frame Buffer has two sets, which work in complemen­
tary fashion to enable overlap of data transfers with RC 
Array execution. 

Context Memory. The Context Memory stores mul­
tiple (32) planes of configuration data (context) for RC 
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Array, thus providing depth of programmability. This 
implies that the system spends less time loading fresh 
configuration data. Fast dynamic reconfiguration is 
essential for achieving high performance with a recon­
figurable system. MorphoSys supports single-cycle 
dynamic reconfiguration (without interruption of RC 
Array execution). 

2.2. System Control Mechanism 

MorphoSys implements a novel control mechanism for 
the reconfigurable component through the TinyRISC 
instructions. The TinyRISC ISA has been modified 
to include several new instructions (Table 1) that en­
able control of different components in the system. 
These instructions contain fields that directly provide 
the values for different control signals to the RC Ar­
ray, DMA controller, Frame Buffer and the Context 
Memory. There are two major categories of these new 
instructions: DMA instructions and RC Array instruc­
tions. The DMA instructions contain fields that pro­
vide the DMA Controller with adequate information 
(starting address in main memory, starting address in 
Frame Buffer of Context Memory, number of bytes to 
load, load or store control). This enables transfer of 
data between main memory and the Frame Buffer or 
the Context Memory through the DMA Controller. 

The RC Array instructions have fields that provide 
the control signals to the RC Array and the Context 
Memory. This is essential to enable the execution of 
computations in the RC Array. This information in­
cludes the contexts to be executed, the mode of context 

Table I. New TinyRISC instructions. 

LDCTXT Load Context from Main Memory to Context 
Memory 

LDFB (STFB) Load (store) data from (into) Main Memory to 
(from) Frame Buffer 

DBCBC, DBCBR Column (or row) context broadcast, get data 
from both banks of Frame Buffer 

DBCB Context broadcast, get data from both banks 
of Frame Buffer 

SBCB Context broadcast, transfer 128 bit data from 

CBCAST 

WFB 

RCRISC 

Frame Buffer 

Context broadcast, no data from Frame Buffer 

Write the processed data back to Frame Buffer 
(in address from register file) 

Write one 16-bit data from RC Array to 
TinyRISC 

broadcast (row or column), location of data to be loaded 
in from Frame Buffer, etc. 

2.3. MorphoSys Execution Model 

The execution model for MorphoSys is based on parti­
tioning applications into sequential and data-parallel 
tasks. The former are handled by the TinyRISC, 
whereas the latter are mapped to the RC Array. 
TinyRISC initiates all data transfers involving appli­
cation and configuration data (context). Tiny RISC 
provides various control/address signals for Context 
Memory, Frame Buffer and the DMA controller 
[11]. RC Array execution is enabled through special 
TinyRISC instructions for context broadcast. 

The MorphoSys program flow may be summarized 
as: first, a special TinyRISC instruction, LDCTXT is 
issued. This initiates loading of context words (config­
uration data) into the Context Memory through DMA 
Controller (Fig. 1). Next, the LDFB instruction causes 
the TinyRISC to signal the DMA Controller to load ap­
plication data, such as image frames, from main mem­
ory to the Frame Buffer. When both configuration and 
application data are ready, a TinyRISC instruction for 
context broadcast, such as CBCAST, SBCB, etc. is is­
sued. This starts execution of the RC Array. 

The context broadcast instructions specify the par­
ticular context (from among the multiple contexts in 
Context Memory) to be executed by the RCs. There are 
two modes of specifying the context: column broad­
cast and row broadcast. For column (row) broadcast, 
all RCs in the same column (row) are configured by the 
same context word. TinyRISC can also selectively en­
able a row/column, and can access data from selected 
RC outputs. 

MorphoSys supports dynamic reconfiguration. 
Context data may be loaded into a non-active part of the 
Context Memory without interrupting RC Array opera­
tion. Since the Frame Buffer has two sets, it is possible 
to overlap computation in RC Array with data trans­
fers between external memory and the Frame Buffer. 
While the RC Array performs computations on data 
in one Frame Buffer set, fresh data may be loaded in 
the other set or the Context Memory may receive new 
contexts. 

3. Related Work 

There are two major classes of reconfigurable systems: 
fine-grain (processing units have datapath widths of a 
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few bits) and coarse-grain (basic processing elements 
have data-paths of eight or sixteen bits or more). Re­
search prototypes with fine-grain granularity include 
Splash [12], DPCA [3] and Carp [4]. Reconfigurable 
processors with coarse-grain granularity are PADDI 
[5], MATRIX [6], RaPiD [7], and REMARC [8]. Mor­
phoSys is a coarse-grain architecture, since the tar­
get applications mostly involve pixel-processing. In 
this section, we compare and contrast some of the 
previously developed coarse-grain systems with Mor­
phoSys. 

Among the systems of MATRIX, PADDI, RaPiD, 
REMARC and RAW [9], MorphoSys has some com­
mon features with each, as well as some differences. 
A major difference is that most of these designs have 
not been implemented at the physical hardware level, 
whereas MorphoSys has been developed from the 
VHDL level down to the physical layout level and will 
be actually fabricated. 

PADDI [5] has a different mechanism for storing and 
broadcasting the context word, it has less depth of pro­
grammability, more complex interconnection network 
using crossbar switches, and a distinct VLIW flavor 
since the instruction word is 53 bits. The EXUs re­
ceive the same global instruction but the decoded in­
struction is different for each EXU, which is different 
from MorphoSys. In MorphoSys, each row (column) 
of RCs receives the same context word, and it has same 
function for each. 

MATRIX [6] has a similar interconnection network as 
MorphoSys, but unlike MorphoSys, the control and ar­
ray processors are configured out of the same hardware 
resources. This makes the dynamic system control be­
comes quite complex. MATRIX lacks a multiplier in 
the basic processing element, the BFU. The levels of 
interconnect have variable delay (in terms of pipeline 
stages); this is constant for MorphoSys. This work does 
not specify the data interface to the external world. 

RaPiD [7] is designed as a linear array of functional 
units, configured as a linear computation pipeline. 
Therefore, it performs well for systolic applications, 
but has limited performance for block-oriented applica­
tion tasks, which MorphoSys performs very efficiently 
(even transpose operations are not needed). However, 
there is no unified macro-controller and an integrated 
memory interface is missing. 

REMARC [8] has 64 nano-processors but these nano­
processors do not have a multiplier (even though it 
targets multimedia applications), but instead have a 
16 entry data RAM. The interconnection network has 
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two levels, and the global control unit has to perform 
the functions of data transfers to the main proces­
sor/memory, whereas in MorphoSys, these transfers 
are carried out by the DMA controller, and are con­
current with the program execution. It does not allow 
dynamic reconfiguration. 

RAW [9] is a system with a set of interconnected 
tiles of RISC processors. The configuration time for 
the interconnect switches is quite high (several instruc­
tions per switch). The design has many VLIW features, 
and each tile includes a FPGA-like configurable logic. 
Having a large number of RISC processors seems in­
efficient, when we consider that MorphoSys is able to 
execute several data-parallel applications at a high per­
formance level using just one RISC processor. 

In summary, the most prominent features incorpo­
rated in the MorphoSys architecture are: 

• Integrated model: This has a novel control mecha­
nism for the reconfigurable component that uses a 
general-purpose processor. Except for main mem­
ory, MorphoSys is a complete system-on-a-chip. 

• Multiple contexts on-chip: this feature enables fast 
single-cycle reconfiguration. 

• On-chip controller: allows efficient execution of ap­
plications that have both serial and parallel tasks. 

• Innovative memory interface: high data throughput 
by using a two-set data buffer that allows overlap of 
computation with data transfer. 

4. Implementation and Verification 

In this section, we describe the steps involved in 
the design and implementation of the major compo­
nents of MorphoSys: the Reconfigurable Cell (RC), 
the TinyRISC, the Context Memory, the Frame Buffer 
and the DMA Controller. The chip is designed using 
0.35 /-tm 3.3 V four metal layers CMOS technology. 

Design Methodology: MorphoSys components are 
implemented using the twin approaches of custom de­
sign and standard cell design. The components that 
constitute the critical path (e.g. RC) or the components 
that have a regular structure (e.g. Context Memory, and 
Frame Buffer) are custom designed. This enables ex­
tensive optimization of these components for the de­
lay and area. The components that are control inten­
sive, consist of random logic or are not in the critical 
path, are designed using logic synthesis tools (Synop­
sys and Mentor Graphics software). Four metal layers 
are available for routing; out of these, two (Metal 3 and 
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Metal 4) are reserved for routing between the compo­
nent blocks. Only two layers are used for routing within 
a component (such as the Reconfigurable Cell). We 
use both IRSIM (switch-level simulator) and Hspice 
(transistor-level simulator) to verify the design of cus­
tom components. For synthesized components, Lsim 
simulator (switch mode and adept mode) is used for 
functional verification and timing analysis. 

4.1. Reconfigurable Cell 

The Reconfigurable Cell (RC) is the basic element of 
the RC Array, which is the reconfigurable component of 
MorphoSys. Each RC (Fig. 2) has a 16 x 12 multiplier. 
Most multi-media applications required that the second 
data input to the multiplier be less than or at most equal 
to 12 bits. Since a 16 x 12 multiplier is significantly 
smaller (and faster) than a 16 x 16 multiplier, and these 
savings would accrue over 64 RCs, it was decided to 
use a 16 x 12 multiplier. Corresponding to this input 
data size, the output of the multiplier cannot be greater 
than 28 bits. Based on this, we designed a 28 bit ALU 
for the RC. 

The data to the multiplier/ALU is provided through 
two 16-bit input muxes. These muxes allow selection 
of data operands from different options. The RC de­
coder generates control signals for the muxes and the 
ALU. The critical path ofRC consists of the 16 bit input 
mux, the 16 x 12 bit multiplier, the 28 bit ALU, and a 
shift unit. Table 2 shows all the functions implemented 
in RC. The special functions such as absolute value, 
count one's, and round are implemented as separate 
units from the ALU to simplify the logic complexity of 
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Figure 2. Reconfigurable cell architecture. 
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Table 2. RC functions. 

Instruction 

A OR B, A AND B, AXOR B, 
A ORC, AANDC, AXORC 

A + B, A - B, B - A, A + C, 
A-C 

A*C 

A *C + B, A *C + Out(t), 
A*C -Out(t) 

IA-BI+Out(t) 

A AND B: Count One's 

A + B if A > 0, A - B if A < 0 

Description 

Two-operand Logic functions 

Two-operand arithmetic 
functions 

Multiplication with constant 

Multiply-accumulate 
functions 

Absolute difference 
accumulate 

ANDing with count # of 
one's in result 

Conditional add/subtract 
based on sign bit of A 

Round {Out(t)) RESET, BYPASS A, Miscellaneous functions 
LOAD Constant, No-op 

A = MuxAoperand, B = Mux B operand, C = constant, Out(t) = pre­
vious output, Out(t+ I) = new output. 

the ALU and improve the overall performance. In the 
following, the design of the three components which 
constitute the critical of the RC (mUltiplier, ALU, and 
shifter) will be discussed. 

The constraint of completing the multiply­
accumulate (MAC) and shift operations in one cycle 
(IOns) is the most challenging part of the design of the 
Reconfigurable Cell. The tight delay constraint mo­
tivated the use of advanced circuit design techniques. 
Also, since there are 64 Reconfigurable Cells in the RC 
Array, a small increase in the area or power consump­
tion of a RC would have resulted in a multiplicative 
effect. Hence, we manually designed the entire recon­
figurable cell. 

Multiplier. A 16 x 12 multiplier is implemented in 
RC. This is the component that requires the maximum 
area and has the longest delay in the RC. Therefore, 
we use complementary pass-transistor logic (CPL) cir­
cuit [13] for designing the multiplier. CPL allows the 
realization of complex logic functions with minimum 
number of transistors. It also features high speed op­
eration and low power consumption. 

Figure 3(a) (CPU) shows the basic structure of the 
CPL circuit. The NMOS pass-transistor network is used 
to realize the logic function and the two output invert­
ers are used as a level restoration block. This circuit 
suffers from static power consumption due to the low­
swing feature of the NMOS pass-transistor networks. 
The high level of output inverter inputs are actually 
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Figure 3. Complementary pass-transistor logic (CPL) structure. 
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Figure 4. CPL implementation of carry-save adder. 

lower than the supply voltage and PMOS transistors are 
not completely turned off in this situation and, there­
fore, leakage current will flow in the output inverters. 
Figure 3(b) (CPL2) shows the modification that solves 
the static power problem, The two small cross-coupled 
PMOS transistors are used to restore the outputs of the 
NMOS pass-transistor network to supply voltage level. 

The multiplier is designed using carry-save adder 
(CSA) array structure with a 16 bits carry-skip adder. 
The CPL implementation of the CSA is shown in Fig. 4. 

Table 3 shows the comparisons of three CSA de­
signs: standard CMOS, CPU, and CPL2. SPICE 

Table 3. Comparison of standard CMOS and CPL carry-save adder 
design. 

Standard CMOS CPLI CPL2 

Number of transistors 40 28 30 

Delay (0.35 {Lm, 3.3 V) 0.54 ns 0.22 ns 0.20 ns 

Power (100 MHz, 25°C) 0.21 mw 0.36 mw 0.18 mw 

26 

simulation (using HP level 39 0.35 lim device models) 
was carried out for each of the three CSA designs. From 
the data in Table 3 the CSA design using CPL2 has the 
lowest delay-power product, hence, it is used in current 
implementation. 

Several researchers [14] have shown that both 
Wallace [15] and Dadda [16] algorithms are efficient 
for array type multipliers and can be implemented using 
the minimum number ofCSAs. However, we use a reg­
ular array structure instead, which requires more CSAs 
and has a longer critical path compared to Wallace or 
Dadda multiplier. The reason behind this decision is 
that our layout methodology allows only metal 1 and 
metal 2 for internal routing within components. If we 
design the multiplier using the Wallace or Dadda de­
sign, it would have a much larger area because of ir­
regular structure of these designs. We estimate that 
both Wallace and Dadda multipliers are about 1.5 times 
larger than the regular array multiplier when only two 
layers are used for routing. Thus for 64 RCs, this in­
crease in area is not tolerable. Hence, we use the regular 
array structure. 

Another important design consideration is to find an 
efficient algorithm for 2's complement multiplication. 
The regular CSA array structure leads us to the decision 
of sign extension and array reduction algorithm [17] be­
cause the partial products can be generated without any 
recoding. Also, the summation of the partial products 
can be carried out by carry-save adders directly without 
any modification. Figure 5 shows the structure of the 
multiplier and the result of the 16 x 12 multiplication 
bit array after sign extension and array reduction. 

It is important to note that the multiplier can be dis­
abled when an application does not involve multiplica­
tion operations. This feature is realized by bypassing 
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Figure 5. Structure and bit array of the 16 x 12 multiplier. 
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the inputs to the multiplier and having the RC decoder 
generate control signals to the bypass unit based on the 
context word. In MPEG, for example, only DCTIIDCT 
kernels require multiplication operations, which con­
stitute less than 10% of the total operation count. By 
disabling the multiplier when not in use, a large amount 
of power can be saved for most of the applications. 

SPICE simulations show that the multiplier delay is 
4 ns (0.35 !Jm, 3.3V CMOS). The power dissipation is 
150 mw at 25°C for 100 MHz operation with the in­
put pattern of FFFF*FFF switching to 0000*000. The 
standby power consumption when inputs to multiplier 
are kept constant is only 0.6 mw. 

ALU. The ALU of the RC is designed to implement 
basic and arithmetic functions. The logic core of the 
one bit ALU is shown in Fig. 6. 

The important part of ALU implementation is to de­
sign the 28 bits adder/subtractor unit for minimum area 
and delay. The timing budget allows approximately 3 ns 
for ALU operations. The carry-ripple adder is too slow 
to accomplish 28 bits addition/subtraction operations 
in 3 ns. Both carry-lookahead adder and carry-select 
adder [18] are well-known schemes for high speed 
adder design, however, they require twice as much area 
as the carry-ripple adder. Consequently, we use carry­
skip [18] scheme (that uses almost the same area as 
the carry-ripple adder but is much faster) for the ALU 
design. Figure 7 illustrates the structure of the 28 bits 
carry-skip adder. 

--------~--- ------------------------------------'------- -"---------------,-,-----"- --"---'---'-'--'---' 
C1 ----===::1", 

" --F=:!=I==::t) 

C3~~ co C, 
C6 

0'" 
C~ _______________________ ~ 

Figure 6. I Bit logic core of the ALU. 

Group 1 Group 2 

The 28 bits adder is divided into 7 groups with carry­
ripple scheme used in each group. Every group also 
generates a carry-bypass signal that equals to 1 if all 
bits internal to the group satisfy Pi = 1 (Pi = Xi EB Yi, 

where Xi and Yi are the inputs to each bit). This signal 
can allow the incoming carry to bypass all bits within 
the group and propagate to the next group. Thus, it 
reduces the time needed to propagate the carry by skip­
ping over groups of 4 consecutive adder bits. 

The worst case operation time of the 28 bits ALU 
from SPICE simulation is within 3 ns. It consumes 
15 mw of power at 25°C for 100 MHz operation. 

Shifter. It is a logarithmic shifter with a maximum 
shift width of 16 bits. As depicted in [19], for large 
shift values, the logarithmic shifter is effective both 
in terms of area and speed, therefore, it is used for 
MorphoSys implementation. 

Critical path. The critical path of the RC, which is 
also the critical path of the MorphoSys M1 chip, in­
cludes a 16-to-1 mux, a 16 x 12 bits multiplier, a 4-to-1 
mux, a 28 bits ALU, a 8-to-1 mux, and a 16 bits shifter. 
We have performed SPICE simulations for the entire 
RC. In order to consider the effects of long wires and 
large fan-out, the maximum possible load of each RC is 
computed and replaced by the equivalent capacitance 
in the SPICE input file. The critical path delay of the 
RC is 9.5 ns. Each RC consumes 200 mw of power at 
100 MHz (2YC) when the multiplier is activated. 

4.2. TinyRISC 

TinyRISC [10] is a simplified 32-bit MIPS RISC pro­
cessor, which has four pipeline stages: fetch, decoder, 
execute, and write back stages, as shown in the Fig. 8. 
The MorphoSys decoder, a sub-component in the de­
code stage, decodes the TinyRISC instructions that are 
specifically for MorphoSys. The MorphoSys decoder 
activates the DMA Controller to transfer data, provides 
control signals to the RC Array to execute operations 

Group 7 

lS I : WI: 1) .... ~I..-.-..l--I .L.-.L.--..JI I 

Figure 7. 28 Bits carry-skip adder. 
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Write-D.ck toge 

Figure 8. TinyRISC architecture. 

defined by the configuration context. It also estab­
lishes communication among TinyRISC and DMA 
Controller, Frame Buffer, Context Memory and RC 
Array. 

The register file consists of sixteen registers. It is a 
standard SRAM [19] design with precharge and sense 
amplifier. Each SRAM cell has one write port and two 
read ports. The register file is written in the first half 
of the clock cycle and read in the second half, which 
supports data forwarding. 

All the TinyRISC components except for the register 
file and data cache, are synthesized using Synopsys and 
Mentor Graphics tools. 

4.3. Context Memory 

The Context Memory stores the configuration program 
(context) for the RC Array. The Context Memory is 
logically organized into two context blocks, each block 
containing eight context sets. Each context set has six­
teen context words. 

The major focus of the RC Array is on data-parallel 
applications, which exhibit a definite regularity. Fol­
lowing this principle of regularity and parallelism, the 
context is broadcast on a row/column basis. The con­
text words from one context memory block are broad­
cast along the rows, while context words from the other 
block are broadcast along the columns. Each block has 
eight context sets and each context set is associated with 
a specific row (or column) of the RC Array. The con­
text word from the context set is broadcast to all eight 
RCs in the corresponding row (or column). Thus, all 
RCs in a row (or column) share a context word and 
perform the same operations. 

28 

Thus, each row (column) of the RC Array receives 
a context word every clock cycle, from the Context 
Memory. This context word is stored in the Context 
Register of each RC (Section 2.1). This context word 
has different fields, as defined in Fig. 3. The field 
ALU_OP specifies ALU function. The control bits for 
Mux A and Mux B are specified in the fields MUX-A 
and MUX~. Other fields determine the registers to 
which the result of an operation is written (REG #), and 
the direction (RS~S) and amount of shift (ALU_SFT) 
applied to output. 

The 12 LSBs of the context word represent the con­
stant field. This field is used to provide an operand 
to a row/column of the RC directly through the con­
text word. It is useful for operations that involve con­
stants, such as multiplication by a constant. However, 
if such an operation is not needed, some of the extra 
bits in the constant field may be used to specify an 
ALU-Multiplier sub-operation. These SUb-operations 
allow expansion of the functionality of the ALU unit. 

The Context Memory is implemented using a stan­
dard CMOS SRAM cell with one read port and one 
write port [19]. The block diagram of the Context 
Memory is shown in Fig. 9. Corresponding to either 
row/column broadcast of the context word, a set of eight 
context words can specify the complete configuration 
(context plane) for the RC Array. As there are sixteen 
context words in a context set, up to sixteen context 
planes may be simultaneously resident in each of the 
two blocks of Context Memory. 

Dynamic Reconfiguration. When the Context Mem­
ory needs to be changed in order to perform some 

Column Context 

[ill [ill [ill [ill [ill [ill [ill 

[ill ~ ~ @ [ill ~ ~ 
;:c 

~ ~ @ @ [ill [ill (ill ... c 
0 u (ill @ @ @ @ @ @ 
~ 
0 

:z: 
@ @ @ @ @ @ @ 

@ @ @ @ @ @ @ 

@ @ ~ @ ~ @ @ @ 

@ @ ~ @ ~ @ @ @ 

Figure 9. Context Memory. 
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different part of an application, the context update can 
be performed concurrently with RC Array execution. 
This dynamic reconfiguration enables the reduction of 
effective reconfiguration time to zero. 

Selective Context Enabling. This implies that only 
one specific row or column may be enabled for oper­
ation in the RC Array. This feature is primarily use­
ful in loading data into the RC Array. Since context 
can be used selectively, and because data bus design 
allows loading of one column at a time, one set of 
context words can be used repeatedly to load data into 
all eight columns of the RC Array. Without this fea­
ture, eight context planes (out of 32 available) would 
be required just to read/write data. This feature also 
allows irregular operations in RC Array, for e.g. zigzag 
re-arrangement of array elements. 

4.4. Frame Buffer 

An important component of the design is the Frame 
Buffer which serves as a data cache for the RC Array. 
The Frame Buffer consists of two sets of identical data 
memory (see Fig. 10). Each set consists of two banks 
of memory with each bank having 64 x 8 bytes of stor­
age. These two sets of the Frame Buffer help make the 
memory accesses transparent to the RC Array, by over­
lapping of computation with the data load and store, al­
ternately using the two sets. MorphoSys performance 
benefits greatly from the streaming process of this data 
buffer. 

au« au« 
• 0 

Figure 10. Frame Buffer structure. 

Byte Addressing. An important feature of the Frame 
Buffer is the ability to provide any eight consecutive 
bytes of data to RC array in one clock cycle. As shown 
in Fig. 10, the Frame Buffer is implemented using an 
SRAM cell with two read ports and one write port. 

To access eight consecutive bytes of data, the de­
coder enables the first read port of the associated de­
coded row and the second read port of the row next to 
the decoded row address. Then, these two rows of data 
are concatenated and a barrel shifter is used to select 
the desired eight bytes based on the column address. 
Figure 11 shows the block diagram of the Frame Buffer. 

4.5. DMAC 

The DMAC block handles all data/context transfers be­
tween Context Memory, Frame Buffer, and main mem­
ory. Three TinyRISC instructions for MorphoSys are 
used to direct the operations of DMAC. 

The DMAC consists of three components: DMAC 
state machine, data register unit (DRU), and address 
generator unit (AGU) (Fig. 12). The DRU is used to 
pack or unpack data since the bus width between main 
memory and DMAC (32 bits) is different from the bus 
width between DMAC and Frame Buffer (64 bits). The 
AGU generates the addresses for the main memory and 
Frame Buffer when reading or writing Frame Buffer 
and Context Memory addresses during context load­
ing. DMAC is synthesized using Synopsys and Mentor 
Graphics CAD tools. 

4.6. Global Routing Network Layout 

The global routing network consists ofthree parts: in­
terconnection and data/context bus network, clock tree, 
and power/ground network. The RC interconnection 
network is comprised of three hierarchical levels. 

Interconnection Network. The underlying network 
is the nearest neighbor layer that connects the RCs in 
a 2-D mesh (Fig. 13(a». The second layer of connec­
tivity is at the quadrant level (a quadrant is a 4 x 4 
RC group), which provides complete row and column 
connectivity within a quadrant. Therefore, each RC 
can access data from any other RC in its row/column 
in the same quadrant. At the highest or global level, 
there are buses that support interquadrant connectivity 
(Fig. 13(b ». These buses are also called express lanes 
and they run across rows as well as columns. These 
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Figure 11. Block diagram of the Frame Buffer. 

lanes can supply data from anyone cell (out of four) in 
a row (or column) of a quadrant to other cells in adja­
cent quadrant but in same row (or column). Thus, up to 
four cells in a row (or column) may access the output 
value of anyone of four cells in the same row (or col­
umn) of an adjacent quadrant. The express lanes greatly 
enhance global connectivity. Even irregular communi­
cation patterns, that otherwise require extensive inter­
connections, can be handled quite efficiently. For 
example, an eight-point butterfly is accomplished in 
only three clock cycles. 

Data Bus. A 128-bit data bus from the Frame Buffer 
to RC array is linked to column elements of the array. 
It provides two eight bit operands to each of the eight 
column cells. It is possible to load two operand data 
(Port A and Port B) in an entire column in one cycle. 

30 
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Eight cycles are required to load the entire RC array. 
The outputs of RC elements of each column are written 
back to Frame Buffer through Port A data bus. 

Context Bus. When a Tiny RISC instruction species 
that a particular group of context words be executed, 
these must be distributed to the Context Register in each 
RC from the Context Memory. The context bus commu­
nicates this context data to each RC in arow/column de­
pending upon the broadcast mode. Each context word 
is 32 bits wide, and there are eight rows (columns), 
hence the context bus is 256 bits wide. 

The dense connectivity of the interconnection net­
work makes it difficult for automatic routing tools to 
maintain regularity of the global routing. A prelimi­
nary run of the Mentor Graphics automatic router gave 
a highly irregular layout. Hence, the global routing 
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Figure 12. Internal block diagram of the DMAC. 

layout was done using a combination of procedural 
and custom design approach as below: 

(1) The clock tree was done as a custom layout using 
an H tree [19] pattern with tree-levels of buffers 
to balance the clock skew of RC array as shown 
in Fig. 14. The clock delay was measured using 
SPICE simulation. The buffers were subsequently 
inserted to other components of MorphoSys (e.g. 
TinyRISC, DMAC, and Frame Buffer) to balance 
the delay. 

(2) The minimum width of metal layers were used 
for power and ground (based on the technology 
electron -migration rules) and accordingly the rout­
ing channel as shown in Fig. 15 was added manu­
ally by editing the layout file. 

(3) The regular pattern of the interconnection network 
were captured using function calls that perform 
the procedural routing for creating the layout. We 

ADDRESS 
GENERATOR 

UNIT 
(AGU) 

partitioned the interconnection network into four 
types of connectivity: 

(a) intra-quadrant row/column full connectivity. 
(b ) inter-quadrant context connectivity. 
(c) inter-quadrant express lane connectivity. 
(d) cross quadrant boundary connectivity. 

For (a) and (b), the routing channels are fixed for all 
RCs. For (c) and (d), the channels switch direction 
when crossing the quadrant boundary. Once the 
pattern of each RC is figured out, the routing ofthe 
interconnection network can be performed easily. 

4.7. MorphoSys Layout 

Figure 16 shows the layout picture of MorphoSys 
M 1 chip. The integration of the five components (RC 
Array, TinyRISC, Frame Buffer, Context Memory, and 
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(a) 

Figure 13. RC Array with interconnection network. 

B 

1 
1 

Figure 14. MorphoSys clock distribution. 

o 
U 

DMAC) was carried out using Mentor Graphics CAD 
tools. The 8 x 8 RC Array, which is the largest com­
ponent of the MorphoSys Ml chip, occupies more 
that 80% of the chip area. Each component of the 
MorphoSys has been fully verified and the YHDL 
model for the System has also been tested. 
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(b) 
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Figure 15. Power/ground routing channel. 

Table 4 lists the transistor count of each component 
and Table 5 summarizes the features of the MorphoSys 
Ml chip. 

In Table 5, we provide three numbers for the power 
consumption. In the worst case where the multiplier 
of each RC is activated in each clock cycle, the power 
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Table 4. Transistor count of morphosys M J chip. 

Component Transistor count 

RC array 1,195,392 

Frame buffer 139,106 

TinyRISC 92,128 

Context memory 105,096 

DMAC 20,594 

MorphoSys decoder 3,910 

Main memory controller 1,180 

Total 1,557,406 

Table 5. MorphoSys MI chip features. 

Process technology 

Area 

Transistor count 

Peak performance 

Clock frequency 

Power consumption 
(100 MHz, 25°C) 

Pin count 

~ 

L 

L 

HP CMOS, 0.35 /Lm, 3.3 Y, four-layer-metal 

14mm x 12mm 

1,557,406 

6.4 GOPS on 16 bits data 

100 MHz 

15 W in the worst case 
<7WforDCT 
<5 W for motion estimation 

240 (132 I/O, 54 power, 54 ground) 

" II.. I 

Figure 16. MorphoSys Mllayout picture. 

Table 6. Operation profile for DCT and motion estimation. 

DCT Motion estimation 
(% operation) (% operation) 

No-op 52.4% 29.2% 

Reset 0% 1% 

Addition 11.9% 36.5% 

Subtraction 16.7% 0% 

Absolute difference 0% 33.3% 
& accumulation 

MAC (multiply/accumulate) 19% 0% 

consumption is 15 W. However, among the applica­
tions we have investigated, there is no such case that 
the multiplier of each RC is enabled in each clock cycle. 
In order to get a more realistic measurement, we also 
estimated the power consumption for DCT and motion 
estimation. We use Hspice to simulate the power con­
sumption of each function shown in Table 2 with the 
worst case scenario, which means each bit of the input 
switches every clock cycle. The power consumption of 
the MorphoSys is accordingly estimated based on per­
centage of each operation in our application mapping 
context shown in Table 6. The results show a difference 
from the worst case by more than a factor of 2. 

J 
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5. Programming Environment 

MorphoSim is the VHDL simulator for the Mor­
phoSys reconfigurable computing processor. Through 
MorphoSim, one may efficiently verify RC Array 
performance using mapping algorithms for different 
applications, such as Motion Estimation, discrete con­
sine transform (DCT), and automatic target recognition 
(ATR), and validate the physical design. MorphoSim 
needs 3 kinds of data: executable instruction, image 
data, and context data. 

Furthermore, a graphical user interface, mView, has 
been developed in TcllTk, that helps to visualize the 
data movement, and changes of the configuration in 
RC Array. The Perl based parser, mLoad, is used to 
generate the configuration contexts. 

Another important aspect of our research is an ef­
fort to develop a programming environment for auto­
matic mapping and code generation for MorphoSys. 
We have developed a compiler, mCom, to compile hy­
brid code for the TinyRISC and the RC Array using 
the SUIF compiler environment [20]. This compiler 
requires users to manually partition the application be­
tween the TinyRISC and the RC Array, for example by 
inserting pragma directives. C code is then mapped into 
MorphoSys configuration words using a C to VHDL 
translator. 

6. MorpboSys Performance Analysis 

In this section, we discuss the performance analysis 
through mapping of video compression and automatic 
target recognition (ATR) on MorphoSys. Video com­
pression has a high degree of data-parallelism and 
tight real-time constraints. ATR is one of the most 
computation-intensive applications with bit-level oper­
ations. We also provide performance estimates based 
on VHDL simulations. 

6.1. Video Compression: Motion Estimation 
/orMPEG 

Motion Estimation is the most computation-intensive 
algorithm in MPEG. Among the different algorithms, 
full search block matching (FSBM) [21] involves the 
maximum computations, however, gives an optimal so­
lution with low control overhead. The detail descrip­
tion of the mapping can be found in [11]. For a refer­
ence block size of 16 x 16 and image size of352 x 288 

34 

Table 7. Performance comparison for motion estimation. 

Pentium 
MorphoSys ASIC [21] ASIC [22] MMX 

# of clock cycles 1020 581 1159 29000 

Processing time 10.2 f1S 2.9 f1 5.8 f1S 145 f1S 

pixels at 30 frames per second (MPEG-2 main profile, 
low level), the processing of an entire image takes about 
21.0 ms on a 100 MHz MorphoSys. This is much faster 
than the frame period of 33.33 ms. 

MorphoSys performance is compared with two 
ASIC architectures implemented in [21, 22] for match­
ing one 8 x 8 reference block against its search area 
of 8 pixels displacement (see Table 7). The number of 
processing cycles for MorphoSys is comparable to the 
cycles required by the ASIC designs. Pentium MMX 
takes about 29000 cycles which is almost thirty times 
more than MorphoSys. It should be noted that the two 
ASIC systems implemented in [21] and [22] used an 
older technology. The processing unit that constitutes 
the critical path in these two implementations is the ab­
solute difference and accumulation unit. Based on our 
simulation, the two ASIC systems can operate at about 
200 MHz in 0.35 /Lm technology. We used a 233 MHz 
for Pentium MMX implementation [23], which is the 
highest clock rate for 0.35/Lm Pentium processor. Tak­
ing into account the clock rate, we depict the perfor­
mance comparison in Table 7. The result shows that 
MorphoSys can deliver an order of magnitude perfor­
mance speedup over general purpose processors. 

6.2. Video Compression: Discrete Cosine 
Trans/orm (DCT)/or MPEG 

The forward and inverse DCT are used in MPEG en­
coders and decoders. In the following analysis, we 
consider an algorithm for fast 8-point I-D DCT [24]. 
It involves 16 multiplications and 26 additions, lead­
ing to 256 multiplications and 416 additions for a 2-D 
implementation. The I-D algorithm is first applied to 
the rows (columns) of an input 8 x 8 image block, and 
then to the columns (rows). The eight row (column) 
DCTs may be computed in parallel. 

The cost for computing 2-D DCT on an 8 x 8 block 
of the image is as follows: 6 cycles for butterfly, 12 cy­
cles for both I-D DCT computations and 3 cycles are 
used for re-arrangement and scaling of data (giving a 
total of 21 cycles). This estimate is verified by VHDL 
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Table 8. Performance comparison for DCT/IDCT. 

Pentium 
MorphoSys REMARC V830RlAV MMX 

# of clock cycles 21 

Processing time 210 ns 

54 

540 ns 

201 240 

1005 ns 1200 ns 

simulation. Assuming the data blocks to be present in 
the RC Array (through overlapping of data load/store 
with computation cycles), it would take 0.49 ms for 
MorphoSys to compute the DCT for all 8 x 8 blocks 
(396 x 6) in one frame of a 352 x 288 image. The cost 
of computing the 2-D mCT is the same, because the 
steps involved are similar. Context loading time is quite 
significant at 270 cycles. However, this effect is mini­
mized through transforming a large number of blocks 
(typically 2376 blocks) before a different configuration 
is loaded. 

MorphoSys requires 21 cycles to complete 2-D DCT 
(or mCT) on 8 x 8 block of pixel data. This is in contrast 
to 240 cycles required by Pentium MMXTM [23]. Even 
a dedicated superscalar multi-media processor [25] re­
quires 201 clocks for the mCT. REMARC [9] takes 
54 cycles to implement the mCT, even though it uses 
64 nano-processors. For the comparison of processing 
time, we use the clock rate of 200 MHz V830RlAV as 
presented in [25] although V830RlAV is implemented 
using 0.25 /Lm technology. REMARC has similar pro­
cessing power (in terms of processing elements) to 
MorphoSys, so we assume 100 MHz for REM ARC. 
The comparison is summarized in Table 8. 

6.3. Automatic Target Recognition (ATR) 

Automatic Target Recognition (ATR) is the machine 
function of detecting, classifying, recognizing, and 
identifying an object without human intervention. The 
ATR processing model [26] developed at Sandia Na­
tional Laboratory has been mapped to MorphoSys [12]. 

For performance analysis, we chose the system pa­
rameters that were used in [26]. The ATR systems 
implemented in [26] and [27] were used for compar­
ison. Two Xilinx 4013 FPGAs (one dynamic FPGA 
for most of the computations and one static FPGA for 
control) are used in Mojave [26], and Splash 2 sys­
tem (consisting of 16 Xilinx 4010 chips) is discussed 
in [27]. For this study, the image size is 128 x 128 
pixels, and the size of the target template is 8 x 8 bits. 
Table 9 summarizes the results of our comparison. For 

Table 9. ATR performance comparison 

System MorphoSys Mojave Splash 2 

Processing time 30ms 210 ms 195 ms 
(before scaling) 

Processing time 30ms 70ms 65 ms 
(after scaling) 

16 pairs of target templates, the processing time is 
approximately 30 ms in the 100 MHz MorphoSys. This 
processing time is about an order of magnitude less than 
the 210 ms processing time of Mojave and 195 ms of 
Splash 2. 

MorphoSys operates at 100 MHz, whereas, Mojave 
and Splash 2 run at 12.5 MHz and 19 MHz respectively. 
These two systems operate at a lower clock frequency 
than MorphoSys because of the older technology (0.6 
/Lm is used in Xilinx 4010 series) and long wire propa­
gation delays (characteristic of FPGAs). Without loss 
of generality, we can scale the clock frequency by a fac­
tor of 3 when counting for 0.35 /Lm technology (Xilinx 
data sheet [28]) used for the design of MorphoSys. Af­
ter this scaling is taken into account, the computation 
time of Mojave and Splash 2 are 70 ms and 65 ms res­
pectively. MorphoSys still outperforms Mojave and 
Splash 2 by a factor of 2. Although MorphoSys is a 
coarse-grained system, it achieves better performance 
compared to the FPGA-based systems (after account­
ing for speed scaling) for this fine-grain application. 
The FPGA-based systems are more appropriate for bit­
level operations, and are inefficient for coarse-grain 
operations. These results demonstrate the flexibility of 
MorphoSys. 

7. Conclusions and Future Directions 

In this paper, we have presented the architecture 
and functionality of the MorphoSys, the design 
methodology and physical implementation of the 
MorphoSys Ml chip. We have also described the 
simulation environment-MorphoSim and MorphoSys 
compiler-mCom, and provided a comparative per­
formance evaluation for applications such as Mo­
tion Estimation, DCT, and ATR mapped on Mor­
phoSys. MorphoSys represents the implementation of 
a high performance reconfigurable system by integrat­
ing a general-purpose microprocessor with an array of 
coarse-grained reconfigurable cells. 

Currently, the PCB design for the MorphoSys Ml 
system is under development. The PCB will include 
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the Ml chip, two banks of memory, and a standard PCI 
bus controller. Finally, this PCB will be plugged into 
PCI bus slot in the host PC to do the final test and the 
real performance evaluation. Meanwhile, we are con­
tinuing to develop the current compiler to provide the 
automatic partitioning of applications into sequential 
and data-parallel parts. 
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Abstract. Hybrid architectures combining conventional processors with configurable logic resources enable ef­
ficient coordination of control with datapath computation. With integration of the two components on a single 
device, housekeeping tasks and, optionally, loop control and data-dependent branching, can be handled by the 
conventional processor, while regular datapath computation occurs on the configurable hardware. This paper de­
scribes a novel approach to programming such hybrid devices that gives the programmer control over mapping 
of data and computation between conventional processor and configurable logic. With a simple set of pragma and 
intrinsic function directives, the NAPA C language provides for manual control over perhaps the most important 
aspect of programming such hybrid devices. Alternatively, as experience is gained about tradeoffs between the two 
computational resources, mapping directives may eventually be generated by an external tool. The paper further 
describes a research prototype compiler that targets the hybrid processor model, with a concrete implementation 
for the National Semiconductor NAPAlOOO chip. The NAPA C compiler parses the mapping directives, performs 
semantic analysis, and co-synthesizes a conventional processor executable combined with a configuration bit stream 
for the configurable logic. Two major compiler phases, the synthesis of pipelined loops and the datapath synthesis, 
are described in detail. 

1. Introduction 

In recent years, a new architecture for system-on-a­
chip has emerged, in which a simple controller, con­
figurable logic, and fixed function units such as dedi­
cated memories are combined on a single device [1-5]. 
Such devices appear attractive relative to conventional 
Field Programmable Gate Arrays (FPGA) because the 
tightly-coupled on-board controller can manage state 
transitions, control flow, and configuration manage­
ment, aspects of a computation that are tedious, error­
prone, and sometimes not possible to manage from 
within the FPGA. Since FPGA state is readily acces­
sible to the main processor with single-cycle latency 
rather than at the other end of an I/O bus, such house­
keeping functions can be managed efficiently by the 
processor. At the same time, processor state can be 
communicated to the FPGA circuits equally quickly, 

*Current affiliation: Los Alames National Laboratory, Los Alames, 
NM. 

controlling inner-loop, compute-intensive datapath 
blocks. The compute-intensive tasks being realized in 
programmable hardware circuits can provide an order 
of magnitude or more performance boost over conven­
tional software on suitable programs [6]. 

In short, this new capability enables application de­
velopers to shift focus rapidly between conventional 
processor and configurable logic without losing appre­
ciable performance to transfer control and data between 
the two components. 

Unfortunately, there is a dearth of tools that target 
such devices. Conventional compilers can generate ob­
ject files for the RISC processor, but do not synthesize 
hardware for the parts of the computation mapped to the 
FPGA. Similarly, while many tools exist to synthesize 
logic from schematics, VHDL, or Verilog, these tools 
do not address the part of the computation mapped to 
the RISC processor. Further, current tools do not ad­
dress the implicit communication that must occur be­
tween the two components as the focus of control shifts 
between them. 
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In this paper we present NAPA e, a language 
and compiler that address the hardware-software co­
synthesis problem in the context of hybrid RISelFPGA 
processors. NAPA e constructs allow the programmer 
to explicitly map data and computations to either RISe 
processor or FPGA. The NAPA e compiler generates 
a conventional e program that contains portions of 
the computation assigned to the RIse processor as 
well as e code to control circuits generated for the 
FPGA. Through the Malleable Architecture Generator 
(MARGE) datapath synthesis tool, the compiler gener­
ates, for the computation mapped to the FPGA, a Ver­
ilog netlist that utilizes highly optimized pre-placed, 
pre-routed macro generators. The compiler targets the 
NAPA 1 000 hybrid processor, a chip which combines a 
small RISe processor (the Fixed Instruction Processor 
or FIP) with configurable logic (the Adaptive Logic 
Processor or ALP). The NAPA e compiler supports 
regular datapath computation on the ALP. The compiler 
also recognizes "ALP functions," which serve as new 
else instructions to augment the RISe instruction set. 
In addition, the compiler analyzes each e loop whose 
body is mapped to the ALP and where possible, gen­
erates hardware pipelines for pipelineable ALP loops. 
While we demonstrate a mapping of our compiler to a 
concrete realization, the NAPA 1000, the compiler out­
put is in a generic form mapping to a well defined hybrid 
RISelFPGA API. The RISe output is in the form of 
an ANSI e program compilable by any ANSI e native 
compiler. The emitted e code calls a runtime software 
library to perform interface tasks such as load con­
figurations, initiate ALP circuits, and read back state 
from the ALP. The ALP circuits are described in sev­
eral different formats such as Register-Transfer Level 
(RTL) VHDL, structural Verilog, and structural VHDL. 
Thus the compiler is easily retargetable to similar hy­
brid RISelFPGA devices. 

The NAPA e compiler was the first to target a hy­
brid FIP/ ALP architecture. A major contribution of our 
work is the modular compiler structure based on the 
SUIF [7] compiler infrastructure and the MARGE data­
path synthesis tool. As the NAPA 1 000 architecture was 
evolving while the compiler was being developed, the 
modular compiler structure allowed the compiler de­
velopment to track the hardware modifications. The 
modular structure also allows us to easily add new 
capabilities. For example, we recently added a new 
memory partitioning phase [8] that automatically allo­
cates variables to memories to optimize pipe lined loop 
throughput. 

40 

Another major contribution of our compiler is that it 
allows application developers to iteratively refine their 
applications, starting with a conventional e program 
running 100% on the FIP, and gradually transferring 
functions to the ALP to accelerate performance. To 
augment automatic partitioning, the programmer can 
experiment with different manual partitioning strate­
gies simply by re-arranging directives at the e source 
code level, and have the compiler generate the hard­
ware, software, and communications code for each dif­
ferent partitioning. This capability is invaluable in or­
der to explore tradeoffs between hardware and software 
in novel devices such as the Napal 000 and other hybrid 
devices. 

In terms of compiler capability, our compiler is one 
of the first to synthesize hardware pipelines from e 
loops. Our datapath synthesis technique was the first 
to rely on hand-optimized pre-placed, pre-routed mod­
ule generators, demonstrating superior area and delay 
characteristics as well as fast compilation. 

This paper extends and modifies earlier reports 
[9, 10] of this work, sections of which are reused here, 
in accordance with the IEEE copyright agreement and 
with the permission of the authors. 

The remainder of the paper is organized as follows. 
The next section reviews related work. Section 3 con­
tains a brief overview of the NAPAI000 architecture. 
Section 4 describes the NAPA e directives for map­
ping between FIP and ALP. The NAPA e compiler is 
described in Section 5. Two major compiler phases, the 
synthesis of pipe lined loops and the datapath synthesis, 
are described in detail. Finally we end with conclusions 
and future directions. 

2. Related Work 

A number of research projects address compiling for 
hybrid conventional RISelFPGA architectures. The 
RAW project of MIT [11] is studying a systolic-array­
like tiled architecture whose components are hybrid 
RISelFPGA processors. The RAW team are study­
ing compiler optimizations to exploit instruction-level 
parallelism with multiple instruction streams, and to 
partition and map computation to the array of tiles. 

The Berkeley BRASS project [3] is designing a hy­
brid MIPS architecture that includes a reconfigurable 
coprocessor. The Garp compiler [12] and its exten­
sion to the Nimble compiler [13] has similar goals to 
those of the NAPA e compiler, but has focused more 
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closely on extracting instruction-level parallelism by 
creating hyperblocks. The NAPA C compiler enlarges 
the size of basic blocks by converting if statements to 
guarded assignment statements, but does not do trace 
scheduling. 

Oxford University researchers have developed a co­
synthesis system that accepts specifications in SML 
and generates occam (software) and Handel (hardware) 
[14] components. In contrast our work is based on a 
more pragmatic level in which algorithms expressed in 
C are partitioned between hardware and software, simi­
lar to the Handel technology. One key difference is that 
C-like statements expressed in Handel convey timing 
requirements: each statement is synthesized to execute 
in a single clock cycle. Thus the timing characteristics 
of the generated hardware circuit are controlled by the 
programmer's method of coding rather than by the data 
dependencies of the computation. 

Weinhardt discusses generation of pipelines for 
FPGA processors [15] with implementation on the Vir­
tual Computer Corporation EV-I of a vector computa­
tional model for FPGA computing. This work is sim­
ilar to ours in that we also pipeline loops. It differs in 
that Weinhardt is concerned with virtualizing the sin­
gle memory module of the EV-l, whereas our target 
architecture has numerous simultaneously accessible 
memories, which we exploit. More recent research is 
concerned with vectorization of loops using traditional 
compiler analysis and transformations [16]. 

3. The NAPAIOOO Architecture 

The NAPAlOOO (Fig. 1, from [17]) integrates on a 
single chip a small embedded 32-bit RISC processor 
(Fixed Instruction Processor, or FIP) along with config­
urable logic, on-chip memory, and an interconnection 
network interface. The Compact RISC CR32 proces­
sor is an embedded processor proprietary to National 
Semiconductor. 

The configurable logic consists of a 64 x 96 Adap­
tive Logic array (ALP) whose core cells are very simi­
lar to National Semi's CLAyTM architecture. The ALP 
is partially and dynamically reconfigurable. It has hi­
erarchical routing connections, with nearest neighbor, 
minor, and major block interconnection. In addition, 
a layer of global interconnection is available either for 
communication to the RISC processor, I/O to the ex­
ternal world, or for general routing. Like the Xilinx 
XC6200 (a fine-grained FPGA memory mapped to the 
host address space), the ALP array is directly accessible 

Figure 1. NAPA I 000 block diagram. 

ALP 

Adaptive Logic CIO 
Processor ~ 

Configurablc 
YO 

from the FIP. It is a part of the FIP memory address 
space. 

A small control module, the RPC (for Reconfi­
gurable Pipeline Controller) performs configuration 
management and interface to the RISC processor. The 
Toggle Bus Transceiver connects a single NAPAlOOO 
part to other NAPAIOOOs on a Multi Stage Intercon­
nection Network. There are two 32 bits x 2 K on­
chip memory banks (Pipeline Memory Array) and eight 
small 8 bits x 256 scratchpad memories (Scratchpad 
Memory Array). A Bus Interface Unit (labeled "CR32 
Peripheral Devices" in Fig. 1) coordinates transfers 
between the NAPAlOOO and external devices such as 
DRAM. 

4. NAPA C Language 

The NAPA C language presents a tightly integrated 
programming model encompassing data storage and 
computation on both FIP and ALP. These concepts are 
available to the programmer or automatic tool with ex­
plicit directives. The extensions provide the following 
capabilities: 

1. indicate whether a variable will reside on the ALP 
as a register, in an ALP local memory, or in external 
memory accessible both to FIP and ALP. 

2. indicate the bit length of an integer variable on the 
ALP. 

3. indicate whether a subroutine is to be computed on 
the FIP or the ALP. 

4. indicate whether one or more statements is to be 
computed on the FIP or the ALP. 

41 



www.manaraa.com

168 Gokhale, Stone and Gomersall 

4.1. Language Extensions 

There are several different styles that may be used to 
introduce these extensions into the language. The first 
is to add keywords and/or overload existing syntax in 
C. This approach limits portability. Another approach 
is to provide new classes in object-oriented languages 
such as C++ or Java. We have chosen not to use this 
approach because we are using the SUIF compiler in­
frastructure, which currently supports C, not C++. 

The alternative we have chosen is to use compiler 
pragmas combined with calls to intrinsic functions. 
Pragma directives are commonly used in the high per­
formance computing community to give the compiler 
out-of-band information on program mapping. For ex­
ample, for vector supercomputers it is common to an­
notate the source program with vectorization directives. 
High Performance Fortran (HPF) [18] defines a set of 
directives to distribute arrays across processor nodes. 
In NAPA C, These "#" directives are processed by 
the compiler, and code is co-synthesized accordingly. 
Other C compilers will simply ignore the pragmas and 
compile the entire program to a FIP architecture. The 
advantage to this approach is that the program is in stan­
dard C. The C program, along with appropriate header 
files and libraries that define the behavior of intrinsic 
functions, can be compiled with pragmas and intrinsic 
calls in place and debugged on the workstation with a 
standard C compiler. It can also be compiled with the 
NAPA C compiler and simulated via the FIP/ALP sim­
ulator to tune performance by adjusting the program 
partitioning. The NAPA simulator is a cycle accurate 
combined FIP/ ALP simulator. FIP operations are sim­
ulated in a simulation model of the CR32 processor. 
ALP operations are simulated by a logic simulator that 
models the behavior of core cells and routing resources. 
Finally, the program can be run on systems containing 
the NAPAI000 part or its follow-ons. Computation 
with non-standard bit lengths may perform differently 
on the workstation, the FIP, and the ALP. For those pro­
grams, the NAPA simulator is the best approach. For 
computation on 8-bit values such as pixels, accurate 
first-order simulation can be done on a workstation. 

4.2. Data Definition Pragmas 

Pragmas are used to define attributes of program vari­
ables. Pragmas can define either the location of the 
variables being declared (loe pragma) or the bit lengths 
of ALP register variables (size pragma). Each pragma 
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int A[5] = {1, 2, 3,4, 5}; 
#pragma ALP loc m1 A 
int b = 15, c = 10, d 
#pragma ALP loc reg b 
# pragma ALP size 4 b 

Figure 2. ALP data declarations. 

5; 
c d 
c d 

begins with "#pragma ALP", and appears on a separate 
line. The word(s) following "#pragma ALP" select(s) 
among various options. The pragma is inserted after the 
normal C declaration of the variable(s) referenced. The 
options listed below tell the compiler where variables 
are to reside. There are five alternatives: ALP core 
cells; ALP scratchpad memory; ALP memory mod­
ules 1 or 2; external memory accessible to both FIP 
and ALP. External memory is the default alternative, 
which the compiler will assume in the absence of other 
pragmas. Arbitrary precision, up to the physical limit 
of the ALP area, is supported for ALP register vari­
ables, while variables in a memory must conform (or 
be coercible to) that memory's data word size. 

1. #pragma ALP loc reg (variable-name-list). This lo­
cation directive means that the variables named will 
be allocated on ALP core cells as ALP "registers." 

2. #pragma ALP loc m{O I 1 I 2 I 3}. This location 
directive means that the variables will be allocated 
in a memory rather than on core cells. The data may 
get allocated in external memory accessible to both 
FIP and ALP (mO); ALP local memory (ml or m2) 
or the scratchpad (m3). 

3. #pragma ALP size (bit-length) (variable-name­
list). This directive sets the bit length of the named 
variab I es to (bit-length). 

Figure 2 show examples of pragmas defining loca­
tion and size of ALP variables. The array A is assigned 
to memory bank 1. Variables b, c, and d reside on 
ALP core cells as ALP registers, and each is four bits 
in length. 

4.3. ALP Function Pragma 

To specify that an entire subroutine is to be executed 
on the ALP and that parameters to and from the subrou­
tine are to be passed through the internal bus, the fol­
lowing pragma must be inserted following the function 
declaration: 
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int Logic_Op( unsigned int x, unsigned int y, 
unsigned int z, unsigned int w) 

{ 
#pragma ALP loc reg x y z w 
#pragma ALP size 4 x y 
#pragma ALP size 2 z w 

return «xty) ~ (x&-z) ~ (wlz»); 
} 

#pragma ALP function Logic_Op size 4 

void mainO 
{ 

unsigned int a, b, c, d; 

/* FIP processing */ 
/* call ALP function */ 

} 

while (a = Logic_Op(a, b, c, d») 
a «= 1; 

Figure 3. An ALP function. 

#pragma ALP function (function-name) size (result­
size) 

The compiler synthesizes a circuit for the function 
body, with parameters copied from the internal bus to 
ALP registers. Upon function exit, the return value is 
written to the bus. In the FIP program, code is gener­
ated to 

1. copy parameters to the internal bus, 
2. activate the hardware function, and 
3. copy the return value from the bus into FIP memory. 

Figure 3 shows an example of using an ALP func­
tion from within a FIP loop. The function is called 
repeatedly until a termination condition is met. The ex­
ample illustrates the fine-grained alternation of focus 
of control that is possible in this hybrid architecture. 
Logic_Dp is effectively a new CISC instruction that 
augments the RISC instruction set. The low order four 
bits of a, b, c, and d are passed on the FIP-ALP com­
munication bus, and the return value passed back on 
the same bus. 

4.4. ALP Blocks 

The following intrinsic functions bracket statements 
that are to be performed on the ALP. The directives 
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indicate that the enclosed statements are to be synthe­
sized as one or more ALP instruction, where an instruc­
tion may execute over mUltiple clock cycles. 

alp_beginO; 
/* ALP-resident hardware structures will be */ 
/* synthesized from the C code here */ 
alp_endO; 

When the ALP function or ALP block is called, the 
FIP program initiates the ALP circuit, and then waits 
for the ALP computation to complete. 

This collection of directives allows detailed spec­
ification of partitioning of data and computation be­
tween the FIP and ALP. The directives can be inserted 
manually or by an automatic system. Recent work has 
focused on automatically generating the data place­
ment directives to optimize the throughput of compiler­
generated pipelines [8] (see Section 5.2). 

5. NAPA C Compiler 

The NAPA C compiler, in conjunction with NAPA­
lOOO-specific low-level tools, generates a combined 
FIP/ ALP executable image. The compiler allocates the 
data to the desired memory space (ALP register, FIP 
memory, or one of the ALP memories). It generates 
ANSI C source for FIP subroutines and statements. 
The FIP native compiler is used to create the object 
module. The NAPA C compiler synthesizes hardware 
structures to represent the C code of the ALP subrou­
tines and statements, and also generates FIP code to 
control execution of the ALP segments. When an ALP 
variable is referenced in the FIP code, the NAPA C 
compiler generates the code to fetch the variable into 
the FIP memory, which requires both FIP code as well 
as an ALP circuit. 

5.1. Compiler Organization 

As shown in Fig. 4, the NAPA C compiler consists of 
a number of phases. Input to the compilation system is 
ANSI C annotated with pragmas and intrinsic function 
calls as described above. The first phases are embed­
ded in the SUIF compiler infrastructure. The pragmas 
are converted to SUIF annotations to the syntax tree. 
Semantic checks are performed to verify correct usage 
of the directives. Directives are propagated as annota­
tions through the syntax tree. During this phase, data 
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~pragm~ 

I 
Semantic 
checks 

Propagate 

annotations 

Figure 4. Organization of the NAPA C compiler. 

Analyze loops 
Create pipeline schedules 

transfers between FIP and ALP are inserted into the 
syntax tree. Such data transfers are needed, for exam­
ple, when ALP data is accessed in a FIP computational 
block. 

An analysis and scheduling phase processes program 
loops and generates pipeline schedules for pipeline able 
loops. Next, ALP segments are extracted from the syn­
tax tree and passed to the MARGE datapath compiler. 
The remaining syntax tree contains purely FIP code, 
which is unparsed to e and processed by the RISe 
processor's e compiler. Our decision to unparse to e 
and use the native RISe compiler was based on uncer­
tainty until fairly late in the design process of which 
conventional processor would be used. Since the gen­
erated FIP program is in standard e, our compiler is 
relatively platform independent, making the compiler 
portable across revisions of the NAPAlOOO and even 
applicable to different hybrid FIP/ ALP architectures. 

The compiler backend MARGE synthesizes the 
hardware circuits for the ALP. As shown in Fig. 4, 
MARGE generates several equivalent representations 
of the hardware circuits. A Register-Transfer Level 
(RTL) representation in VHDL is generated, and can 
be processed by conventional synthesis tools. In addi­
tion, MARGE performs synthesis to generate a struc­
tural representation in Veri log and VHDL. The Verilog 
version calls macro module generators from a library 
provided by National Semiconductor llO]. The end 
result of the compilation is a combined FIP/ALP exe­
cutable image. In the following sections, we describe 
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two key compiler phases, the pipeline loop scheduling 
and datapath synthesis, in greater detail. 

5.2. Loop Analysis and Pipeline Scheduling 

eonfigurable logic is a natural candidate for pipeline 
synthesis. Hardware pipelines, with a long history of 
use, keep various stages of a unit busy by starting a 
new operation while the previous operation is still in 
progress. Software pipe lining adapted this idea to a 
code sequence such as a loop: in some cases a new 
loop-iteration can be started while a previous iteration 
is in progress. The Napa e compiler's pipelining strat­
egy for loops extends standard scheduling methods to 
pipeline loops. The algorithm implements the method 
described by Lam [19]. The key new ideas in this ap­
plication of Lam's algorithm are the following: 

1. Unlike Lam's VLIW target model, we are not con­
strained by a limited number of function units (eg. 
adders). We may synthesize as many function units 
as necessary to satisfy pipeline throughput goals. 
The limiting resource in our model is the number of 
memories and the location of data accessed in those 
memories during the loop. 

2. The hardware we generate is capable of concurrent 
micro-operations, and we can exploit that concur­
rency to relax data dependency constraints of con­
ventional software pipelining. 

The pipeline scheduler uses a dependency graph in 
which the nodes correspond to ALP function units. The 
edges of the graph are precedence constraints. A pair 
(ni' n j) is a normal edge if, in any iteration of the loop, 
node ni must be executed before node n j. If (ni' n j) is 
a special edge, then, in any iteration node n j must be 
not be executed before node ni. A special edge permits 
concurrent execution of two nodes. This lets us model 
register use in which, during a single cycle, a value can 
be read from a register early in the cycle and written to 
the register late in the cycle. 

The scheduler produces a schedule for a regular 
pipeline, in which every iteration is executed according 
to the same schedule, with successive iterations initi­
ated at a fixed initiation interval s. A schedule gives a 
list of the nodes to be executed at each time step. The 
steady state of the pipeline is given by the last s stages 
of the schedule. Throughput is one iteration every s 
cycles. 
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The pipeline scheduler tries to find a schedule with 
successively increasing iteration intervals s < m, where 
m is the length of a nonpipelined schedule, which is 
the length of the longest path in the dependency graph. 
We use a technique suggested by Lam to find a lower 
bound for the initiation interval, based on multiple uses 
of resources, rather than beginning at s = 1. 

The scheduling algorithm works as follows. For each 
node n in the dependency graph, the precedence con­
strained range for n is an interval [tl, t2] in which n 
can be scheduled. For a graph containing N nodes, an 
upper bound on the length of the pipe lined schedule 
with initiation interval s is N + s. The scheduler ini­
tializes the precedence constrained range for each node 
to [0, N + s]. The range is updated at each scheduling 
step, as described below, to preserve the partial order 
given by the dependency graph. 

The modulo-s reservation table consists of s resource 
vectors used (i) that are initially zero. This models re­
source usage by time step modulo s, in an innovation 
that Lam introduced into software pipelining, extend­
ing the idea of a reservation table used by traditional 
hardware pipeline schedulers to track resources shared 
by pipeline stages. 

The pipeline scheduler selects nodes in an order that 
ensures that all their predecessors in the partial or­
der given by the dependency graph have already been 
scheduled. To schedule a node n, the scheduler first 
limits the range to the first s stages of n' s precedence 
constrained range. This suffices because, with initia­
tion interval s, at each stage t all the nodes scheduled 
at stages t mod s are executed. If a node cannot be 
scheduled within s stages, it cannot be scheduled. The 
scheduler places n at the first such stage t in which the 
resources it requires are available: used (t mod s) n 
needs (n) = ° where n is the logical AND operator. 

Having chosen stage t for node n, the scheduler up­
dates the vector used (t mod s) in the modulo-s reser­
vation table. For each node n' that is a successor of n 
in the dependency graph, it updates the lower bound 
in the precedence-constrained range of n' from [tl, t2] 
to t~ = max(tl, t + 8) where 8 is the length of the 
longest path from n to n'. Lam's algorithm and our im­
plementation of it recognize a class of inter-iteration 
dependency termed doacross, in which a value com­
puted in one iteration is used in a later iteration. If 
the newly scheduled node n is the target of a doacross 
edge in the dependency graph, then the scheduler also 
updates the precedence-constrained range of the node 
at the source of that edge. 

When the hybrid system executes the program, it 
performs the pip eli ned loop as follows: 

1. The FIP processor sends the ALP a signal to exe­
cute an initialization circuit to set up data and loop­
control registers. 

2. Then the FIP sends the ALP a signal to perform all it­
erations of the loop. On the ALP, the loop iterations 
are pipelined, with a new iteration started every s 
cycles, where s is the initiation interval determined 
for the schedule. 

3. If there are final results to store, the FIP signals the 
ALP to execute a finalization circuit. 

5.2.1. Pipelined Matrix Multiply. For an example of 
the Napa pipeline facility, consider the problem of ma­
trix multiplication of two N x N matrices b[] and c[], 
to produce a result matrix a[]: for each pair i, j of 
indices, calculate 

N 

a[i, j] = L brio k] x c[k. j] 
k=1 

Figure 5 shows the compiler intermediate 3-address 
code for the innermost loop of matrix multiplication. 
We assume the matrices b[] and c[] have been de­
clared to reside in separate ALP memories. The ini­
tial assumptions listed in the figure are satisfied by an 
initialization circuit, not shown. The partial sum is ac­
cumulated in Reg3. After the inner loop is executed 
N times. a final circuit, not shown. is executed once to 
store the result to a[i.j]. 

Matrix Multiply Inner Loop 
Initial assumptions: 

1 
2 
3 
4 
5 
6 
7 
8 

MARO gives the address of b[i,O] 
MARl gives the address of c[OJ] 
Reg3 = 0, used to accumulate the sum 
Reg4 = increment to the next element in row 
Reg5 = increment to the next element in column 
At completion, Reg3 gives the result. 

LD MDRO [MARO] 
LD RegO MDRO b[i,k] 
LD MDRI [MARl] 
LD Regl MDRI c[kj] 
MUL Reg2 RegO Regl b[i,k] * c[k,j] 
ADD Reg3 Reg2 Reg3 partial sum 
ADD MARO Reg4 MARO incr. addr b[i,k] 
ADD MARl Reg5 MARl iner. addr c[k,j] 

Figure 5. Matrix mUltiply three-address code. 
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Schedule for S=l 
time nodes 

0 1 3 7 8 
1 2 4 
2 5 
3 6 

Throughput analysis: 
Nonpipelined schedule 
L schedule length (cycles) 4 
T throughput: 1 iteration every 4 cycles 

Pipelined schedule 
L schedule length (cycles) 4 
S initiation interval 1 
T throughput: 1 iteration per cycle 

Improvement factor 4.0 

Figure 6. Matrix multiply pipelined schedule. 

For the inner loop, the Napa C compiler generates 
an ALP circuit with the nodes scheduled as shown in 
Fig. 6. Each node number corresponds to the corre­
sponding line of intermediate code shown in Fig. 5. 
A memory access takes two stages, one to load the 
memory address register (MAR) with the memory ad­
dress, and one to load or store the memory data register 
(MDR). In the first stage, the addresses for b[i,k] and 
c[k,j] are loaded into their respective MAR's. Nodes 
7 and 8 are also executed, to increment the addresses 
of b[i, k] and c[k, j]. Notice the concurrent reading 
and writing of registers. For example, node I reads 
MARO at the beginning of the stage, to get the memory 
address, and node 7 writes it at the end of the stage, 
after incrementing. 

In the second stage the data are loaded from mem­
ory modules 0 and 1, respectively. The multiplication 
occurs in the third stage. The fourth stage has an accu­
mulation operator that adds its input to the partial sum 
it maintains. 

The throughput analysis summarizes the results of 
pipeline scheduling. Pipelining found a schedule with 
an initiation interval of one. The throughput of the 
pipe lined version is one iteration every cycle, an 
improvement factor of four over the non-pipelined 
version. 

5.2.2. Pipelined Walsh-Hadamard Transform. The 
Walsh-Hadamard transform, widely used in signal pro­
cessing applications, presents an example in which the 
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Inner loop of discrete Walsh-Hadamard transform 

Z(k + l)[j] = 
Z(k)[j] + Z(k)[j EJ) 2k] 
Z(k)[j] - Z(k)[j EB 2kJ 

if the k-th bit of j is 0 
if the k-th bit of j is 1 

where EJ) is logical operator "exclusive OR". 

Figure 7. Hadamard transform, inner-loop equation. 

pipelined schedule is different from a nonpipelined 
schedule. 

Figure 7 shows the equation calculated in the inner 
loop. An outer loop indexed by k generates a new vec­
tor Z(k + 1) from the old vector Z(k) by executing 
N iterations of the inner loop on j. To complete the 
transform, the k-loop is executed log(N) times. 

To eliminate control flow in the inner loop, we 
rewrite the code to calculate 

Z'[j] = x x Al + y x A2 

where A I and A2 are the two possible values shown in 
Fig. 7, and x and yare truth values that are 1 to select 
the term and 0 to ignore it. 

Figure 8 shows the three-address code for this linear 
form of the inner loop of the code. (We note that this 
figure shows code that has been improved slightly by 
traditional compiler optimizations that will be incorpo­
rated into Napa C in the future.) 

The code reads Z(k) from Memory 0 and writes 
Z(k + 1) in Memory 1. Successive iterations of the 
outer loop alternate in copying from one memory to 
the other. Notice that this code is an excellent candi­
date for dynamic partial reconfiguration, to reverse the 
addresses of input and output memory banks. In the 
absence of dynamic reconfiguration, additional control 
logic would need to get inserted to select between read 
or write access to the two sets of MARs and MDRs. 

The compiler generates the schedule shown in Fig. 9. 
With an initiation interval of 2, the pipelined schedule 
delivers a throughput five times that of the nonpipelined 
schedule. 

Our compiler presently generates pipelines for defi­
nite iteration (for) parallel loops. We are currently 
augmenting the dependency analysis phase to mark in­
definite iteration (while) loops with do-across depen­
dence as pipelineable. 

5.3. Datapath Synthesis 

The compiler front end phases are responsible for 
identifying and extracting ALP operations from the 
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Inner loop of discrete Walsh-Hadamard transform 
Calculate vector Z(k+ l) for k+ I-st stage 

Inner loop iteration count is N, where N is the length of the vector. 
Gets repeated log N times 

Assume Reg15 gives base address 
of Z(k) in Memory 0 and Z(k + 1) in Memory 1 
Reg14 gives address of Z(k)[j] 
Reg13 gives offset of Z(k)[j EB 2k] 

1 LD 
2 LD 
3 LD 
4 XOR 
5 MUL 
6 ADD 
7 LD 
8 LD 
9 AND 
10 DIV 
11 XOR 
12 ADD 
13 SUB 
14 MUL 
15 MUL 
16 ADD 
17 LD 
18 LD 
19 ST 

Reg12 gives 2**k 
Reg11 gives j 

MARO Reg14 
MDRO [MARO] 
Reg6 MDRO 
Reg10 Regll 
Reg13 ReglO 
MARO Reg15 
MDRO [MARO] 
Reg5 MDRO 
Reg9 Regll 
Reg8 Reg9 
Reg7 Reg8 
Reg4 Reg5 
Reg3 Reg5 
Reg2 Reg7 
Regl Reg8 
RegO Reg 1 
MARl Reg14 
MDR1 RegO 
[MARl] MDR1 

Reg12 
sizej 
Reg13 

Reg12 
Reg12 
one 
Reg6 
Reg6 
Reg4 
Reg3 
Reg2 

Z(k)[j] 
j EB 2k 
offset of ( Z(k)[j EB 2kJ) 
addr( Z(k)[j EB 2kJ) 

Z(k)[j EB2k] 
y = j EB 2k k -th bit of j 
y is 0 if k -th bit of j is 0, else 1 
x is 1 if y is 0, else 1 
Al = Z(k)[j EB 2k] + Z(k)[j] 
A2 = Z(k)[j EB 2k] - Z(k)[j] 
x * Al 
y * A2 
x * Al + Y * A2 
addr of Z(k + 1)[j] 
Z(k + 1)[j] 
store 

20 ADD Regll Reg11 incr J increment j 
21 ADD Reg14 Reg14 sizej increment address in Z(k) to j + 1-st 

Figure 8. Hadamard transform, three-address code. 

intennediate code. The individual operations are placed 
in one of two sorts of blocks, pipeline blocks, emitted 
for those loops that the compiler was able to pipeline, 
and standard blocks. The latter correspond to basic 
blocks from the source C program extended, if pos­
sible, by eliminating if-then-else control flow. 

5.3.1. Overview. The purpose of datapath synthesis is 

1. to map a block's arbitrary bit-length operations onto 
hardware function units, 

2. schedule the clock cycle(s) during which the oper­
ation is active, and 

3. generate control logic to arbitrate the use ofthe hard­
ware function units. 

The MARGE backend is responsible for synthesiz­
ing these hardware circuits. Each standard block is 
mapped into a single custom "instruction" which con­
tains all the operations inherent in the block. Each 
pipeline block, created by the analysis and pipeline 
phase, is mapped to a hardware pipeline instruction cus­
tomized to the loop computation in the block. The hard­
ware function pipeline is controlled by a customized 
pipeline controller, also generated by MARGE. The 
structure of the MARGE-generated datapath is illus­
trated in Fig. 10. The figure shows an ALP program 
containing five instructions. Instructions 1-4 are stan­
dard blocks, containing the operations of four different 
extended basic blocks in the C program. Instruction 5 
is a pipeline block, synthesized from a loop in the C 
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Schedule for S=2 
time nodes 

0 1 4 9 17 20 21 
1 2 5 10 
2 3 11 
3 6 
4 7 
5 8 
6 12 13 
7 14 15 
8 16 
9 18 

10 19 

Throughput analysis: 
Nonpipelined schedule 
L schedule length (cycles) 10 
T throughput: 1 iteration every 10 cycles 

Pipelined schedule 
L schedule length (cycles) 11 
S initiation interval 2 
T throughput: 1 iteration every 2 cycles 

Improvement factor 5.0 

Figure 9. Walsh-Hadamard pipelined schedule. 

program. During execution of the FIP program (also 
generated by the NAPA C compiler), a specific in­
struction number is sent to the ALP. The instruction 
is decoded, activating the appropriate block of logic. 

!rUCtion Ins 
fro mFlP 

Adaptive Logic Processor 

t Instruction 
Decoder 

Pipeline 

, 
Control 

Figure 10. Block diagram of MARGE-generated ALP program. 
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If the instruction is a pipeline instruction, the pipeline 
controller is activated, and controls the pipeline stages 
of the instruction. 

An instruction contains multiple operations, some 
of which execute concurrently and others sequentially. 
Thus an instruction may span multiple clock cycles. 
In each cycle, a set of operations is performed. Each 
operation is assigned an instruction number and a "tick" 
or cycle number. Only when it is the right instruction 
number and the right cycle within the instruction will 
that operation be active. In our model, each operation 
completes in one clock cycle. 

An instruction representing a standard block is 
scheduled into one or more stages determined by the 
data dependencies in the block. Exactly one stage of 
a standard block is active at one time. There may be 
multiple operations active in a stage at one time, assum­
ing data dependencies permit. As shown in Section 5.2, 
the operations in a loop are scheduled into a number of 
pipeline stages. The number of stages concurrently ac­
tive is determined by the initiation interval. The num­
ber of concurrent operations within a stage is deter­
mined by data dependencies and resource constraints. 

During synthesis, an individual operation within a 
stage is mapped to a function unit appropriate to the 
operation, ego adder or comparator. The function unit 
is selected from a library of module generators provided 
by National Semiconductor. 

5.3.2. Module Generators. The module generation 
system Modgen was developed by Charle' Rupp 

Instruction I 

~ Instruction 2 

Tick 
Instruction 3 

I 
Decoder 

Instruction 4 

Pipe neln tructi nS 
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Arithmetic Control 
ALUs Comparators 
Absolute Value Encoders 
Adders Decoders 
Decrementers Hi/Lo/True/Comp blocks 
Incrementers Mask generators 
Counters Multiplexors 
Shift Operations Tristate Buses 
Boolean Funes. 
Multipliers 
Rotators 

Figure 11. Module generator library. 

for National Semiconductor. The module generation 
system enables a designer to build a library of para­
meterized generators that allow the creation of a spe­
cific function with any number of bits (subject to the 
size limitations of the chip) with trade-offs between 
speed and area. 

The library of generators encapsulate construction 
algorithms specific to the architecture which reflect de­
sign and layout complexity captured from an expert 
designer for the technology, thereby maximizing func­
tional density and performance. The actual generators 
exist in a C-like language called D4 [20] and are eas­
ily written and tested once a specific function has been 
identified and prototyped. At the present time, the li­
brary of generators contain most of the commonly used 
compute functions used in datapath design. 

5.4. Module Library 

Figure 11 shows a partial list of generators available in 
the library [21]. 

Specifically, for the CLAy/ALP technology, Reed­
Muller logic [22] has been highly leveraged for most 
of the compute-oriented functions as it offers an effi­
cient alternative given the structure of the core cells 
in the array (XOR-based). Given the combination of 
this technique along with the expert place and route 
techniques imparted upon the generators, the macro 
functions result in extremely dense and performance­
intensive manifestations for the technology. 

As an example of quantitative comparison between 
functions generated using the module generators and 
functions generated using a combination of synthe­
sis and automatic place and route tools, refer to 
Fig. 12. The figure compares area and delay for sev­
eral representative functions. Area is expressed in cells. 
Delay has been normalized to the older CLaY cell 

Signal Processing Memory 
FIR Filters Register Banks 
Lin. Seq. Gen. ROM 
CRC detect/gen EEROM 
Gray Code converters SRAM 

Function Synth./APR Modgen 
8-bit Add 144 cells/2.75 16 cells/.5 
14-bit ADD 420 cells/4.3 28 cells/.5 
8x8 Parallel Mult. 2600 cells/1.6 255 cells;' 7 
9xll Parallel Mult. 2800 cells/1.8 408 cells / . 7 

Figure 12. Area/delay comparison. 

architecture, with the Modgen delay for each function 
as the unit delay. The figure shows that the synthesis 
designs occupy between 9-15 times as many cells as 
the equivalent Modgen designs. The synthesis designs 
have 2.3-8.6 times the delay of the Modgen designs. 

The parameterized generators not only eliminate 
the need to maintain large predefined macro libraries, 
but more significantly accommodate the generation of 
functions with arbitrary bit length. Rather than using 
functions divisible by 4-bits (as offered in most coarse­
grain architecture systems) and wasting the unused bit 
logic, functions of specific bit-lengths can be invoked. 
This results from the bit slice techniques used in the 
generators. Given a large number of functions using 
non-standard bit sizes, significant area can be saved. 

Additional flexibilities exist in the generators to al­
low the designer to make area and speed tradeoffs (al­
gorithm selection) as well as physical options to ease 
integration with other functions. For example, different 
multiplier algorithms allow speed area tradeoffs (e.g. 
Ripple Carry v.s. Carry Save). Examples of physical 
options are output spacing and control line placement. 
Output spacing (referred to as the "pitch" parameter) 
is important when abutting to other modules during 
final integration. If a module is driving another mod­
ule with input pins residing on a pitch of 2, select­
ing a pitch 2 output spacing allows perfect abuttment 
with no routing overhead (thereby minimizing area and 
delay). Strategic physical placement of control lines 

49 



www.manaraa.com

176 Gokhale, Stone and Gomersall 

! 2-1 mux bank 
processor Q.vidth = _gen_MUXBNK(.vidth,.pitch,DO_.vidth,Dl_.vidth,S) 
{ int i; 

for (i = 0; i < vidth; i=i+1) 
{ AT 0, (vidth-i-l)*pitch; Q.i PMUX.l(DO_.i,D1_.i,S); 
} 

} 

} 

Tristate buffer bank 
_gen_TRIB 

processor bus Q _gen_TRIBNK(.vidth,.pitch,A.vidth,OE) 
{ int i; 

for (i = 0; i < vidth; i=i+1) 
{ AT 0,(vidth-i-1)*pitch; ~,Q PBUFZ.l(A.i,OE); 
} 

} 

Figure 13. Multiplexor and tristate generators. 

also serves to minimize routing during the integration 
stage. 

We have also gained efficiency by using generators 
for multiplexing structures (for control). Multiplexing 
three or less signals is generally achieved using 2 : 1 
multiplex combinations. Multiplexing more than three 
signals becomes more efficient using a tristate struc­
ture, which packs quite nicely in the CLAy array com­
pared to other technologies. 

These functions are represented by very simple gen­
erators shown in Fig. 13 (2: 1 mux bank and tristate 
buffer bank). We have also employed more complex 
tristate-multiplex structures, for example, 2-dimen­
sional (n x m) tristate banks. 

The module generator library is used by MARGE. 
In addition, these module generators can be used man­
ually to develop designs. 

5.4.1. Automatic Module Expansion. In order to be 
used in a design, each module generator must be ex­
panded first and then instantiated into the generated 
design. To make the module generator system work 
automatically with MARGE, we have developed a tool 
that invokes a generator whenever a generator call is 
detected in the netlist. The tool scans the design netlist 
to glean all module generator instances. A "variants" 
file is then constructed which contains the list of all 
macros to be generated along with parameter values 
extracted from the instantiation. The variants file is 
then passed to the module generation engine to auto­
matically generate all necessary macros along with any 
design representations required. The generated macros 
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are essentially treated as a design library used in subse­
quent integration, verification and bitstreaming steps. 

An example of a generator instantiation using Ver­
ilog syntax appears below: 

wire [7:0] sum,wl,w2; 

II add two 8-bit words, put result in sum 
add2_9 i15 (sum,cr,wl,w2); 

The part i15 is an add2_9 component. By conven­
tion, this reference consists of two parts, first the name 
of the generator, in this case add2, followed by the bit 
length of the operands, in this case 9. The other para­
meters to the add2 macro generator include the name 
of the result, sum, the name of the carry, cr, and the 
names of the two inputs, wI and w2. 

The compiler computes bit lengths of operands and 
result, and constructs the instantiation name based on 
the combination of operation to be performed and de­
sired bit length. 

5.4.2. Details of Datapath Synthesis. The basic ele­
ments used by our model are registers, functional units, 
routers, and control logic. 

• Registers: Arbitrary bit length registers mapped to 
configurable logic cells serve as the basic data stor­
age element. Each variable annotated with a "reg" 
pragma is assigned a register. Additional registers 
may be allocated for intermediate storage of tempo­
rary values as needed. The Register Bank Generators 
are invoked for register elements. 
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• Functional Units (operators): Functional units are 
blocks that perform basic operations on data. Some 
examples of arithmetic and logical operators are 
adders, subtractors, comparators, bitwise ANDs and 
bitwise ORs. The Arithmetic Generators are used 
for functional unit elements. We assume that each 
function unit takes a single clock cycle to execute. 

• Routing Control: Data must be routed from regis­
ters to functional units to undergo some operation. 
In most cases these operations will result in some 
output value that must be routed back to a register 
for storage. In some simple cases the source of data 
may simply be hard-wired to the destination. The ba­
sic components used for more complicated routing 
are multiplexors and tri-state busses. Multiplexors 
are used when a destination has different data sources 
on different instructions: it will select between the 
possible sources during the appropriate instructions. 
When the number of input sources becomes suffi­
ciently large it may be more efficient to replace the 
multiplexors with banks of tri-state gates. With the 
CLAy/ALP technology, tri-states become the more 
efficient option for three or more input alternatives. 
Control Generators are used for routing control. 

• Control Logic: Basic logic gates (ANDs, ORs and 
NOTs) must be used to generate control signals to 
enable registers to latch data only on certain cycles 
of instructions. Similar control signals are needed to 
control routing circuitry to switch between different 
multiplexor inputs at different times. 

The above components are controlled by signals 
from the instruction decoder and tick decoder. 

By way of example consider the following four op­
eration sequence: 1 

1) A=B+C; (operation 6, tick 2) 
2) A=B+D; (operation 4, tick 0) 

3) A=D-C; (operation 7, tick 3) 

4) A=A+B; (operation 3, tick 1) 

Since there are four variables in the program, four 
registers are needed (see Fig. 14.) There are two op­
erators used in the program: a subtractor is needed for 
instruction 3, and an adder is needed for instructions 
1, 2 and 4. The adder input is taken from four differ­
ent sources on different instructions. The operand B 
is used in all addition operations, so the first input of 
the adder may be hardwired to the output of register 
B. However, the second input to the adder requires 
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Figure 14. Structural hardware description from RTL methodol­
ogy. 

different sources on different instructions. The second 
input to the adder must be fed from the output of a 
tri-state router whose inputs are hardwired to be the 
outputs of registers A, C and D. The subtractor inputs 
are hard wired to be taken from the outputs of registers 
D and C. Since the source of the data being written to 
register A varies, a two input multiplexor is needed to 
route either the output of the adder or subtractor to its 
input. 

The combination of signals from the instruction de­
coder and the multi tick decoder creates a unique control 
signal that can uniquely identify every clock cycle of 
every instruction. These signals can be used to control 
multiplexor input selectors and to assert register enable 
inputs. Figure IS illustrates the use of these signals in 
the context of the above example. 

Since Register A is the destination of data on all four 
instructions, an enable signal must be generated to al­
low it to latch new data on all four instructions on the 
appropriate multi tick cycles. The appropriate signals 
must also be generated to select the proper inputs of 
the multiplexor feeding register A. Likewise, the tris­
tate enable signal must be created so that register C is 
routed to the adder on the first instruction, register D is 
routed to the adder on the second instruction, and reg­
ister A is routed to the adder on the fourth instruction, 
all on the appropriate multitick cycles. 

The example above maps to a relatively simple hard­
ware description composed of basic functional build­
ing blocks. These building blocks are obtained from 
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Figure 15. Data routing and control structures. 

Op7 

Tick 3 

MuxControl 

the Modgen module library, so that the operations are 
expressed in terms of optimized macros that have been 
generated on the fly. 

The example above illustrates the basic methodol­
ogy. MARGE also performs various optimizations: 

• Function unit reuse: Function units are reused be­
tween operations whenever possible. It is possible 
to reuse a function unit if it is of the appropriate size 
and functionality and is not being used in a different 
operation on the clock cycle currently being sched­
uled. This optimization is controlled by a compiler 
switch since it is sometimes more efficient from the 
routing point of view to duplicate function units. 

• Commutativity optimization: Operands to a bi­
nary function may be swapped to reduce mux/tristate 
control logic. In the fourth instruction of the above 
example, MARGE swaps the operands of the 
commutative add operation so that the left input to 
the adder can be hardwired to B. Without the trans­
formation, a mux would have been generated for the 
left input. 

The MARGE synthesis module can also handle bit in­
sertion and extraction operations, in which a portion of 
a register is stored or a range of bits from a register is 
extracted. These operations can be expressed via in­
strinsic function calls and map directly into wires (plus 
mux and tristate control if required) in the hardware. 

We have found that invoking the module generators 
through MARGE delivers significant performance im­
provement over conventional synthesis. 

Figure 16 shows comparative results from two pro­
grams XCorr, a bit stream cross correlation program, 
and DNA, a DNA sequence match program. Both pro­
grams use systolic algorithms. XCorr performs bit-

52 
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Tickl 

Op6 

TiekZ 

Op4 

Tick 0 

Op7 

Tick 3 

Register Enable Control 

Program Synthesis/ APR Modgen 
XC orr 1444 cells 428 cells 
DNA 2703 cells 1350 cells 
XC orr 153 nets 81 nets 
DNA 403 nets 221 nets 

Figure 16. Synthesis vs. modgen on two applications. 

oriented operations and sums into a 16-bit counter. 
DNA uses operands of 2- and 4-bits, where the 2-bit 
operands are used in compares, and the 4-bit operands 
are used in adds. The gate-level structural code emit­
ted by the compiler was processed by two different sets 
of tools. The column labelled Synthesis/APR shows 
the result of processing the structural code with the 
Synopsys Design Compiler and then using National 
Semiconductor tools to generate the bit streams. The 
column labelled Modgen show the result of mapping 
MARGE's structural output to pre-placed, pre-routed 
macros from the Module Library. For each application, 
the table shows both the number of cells used and the 
number of nets required by the alternative compilation 
methods. As the table shows, there is a dramatic reduc­
tion in the number of core cells used by the Modgen 
versions over the synthesis versions, with the synthe­
sis versions taking up to 3.4 times as many cells. In 
addition, the number of nets, an indication of routing 
resources consumed, are also reduced in the Modgen 
versions. The synthesis versions require up to 1.9 times 
as many nets. 

We have obtained efficiency over traditional syn­
thesis by targeting a library of pre-placed, pre-routed 
macro generators for a fine grained FPGA architec­
ture. The macro generators have been designed by ex­
pert engineers to be arbitrarily expandable in bit width 
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and to fit well with each other. Our techniques show 
significant area and delay improvements for Modgen 
elements over equivalent functions compiled through 
traditional synthesis and APR. 

6. Conclusions and Future Work 

We have described a language and compiler that target a 
novel hybrid RISC/FPGA architecture. Contributions 
of our work include 

• defining a methodology to explore performance 
trade-offs in mapping computation between FIP and 
ALP 

• developing a small set of directives to allow pro­
grammer or automatic system to specify mapping 
between FIP and ALP 

• modular construction of the various phases of the 
compiler, which allows us (and others) easily to in­
sert new capabilities into the system 

• synthesis of a new sort of executable image that com­
bines conventional object code with configuration bit 
streams 

• automatic analysis of loops for pipelining, and syn­
thesis of customized hardware pipelines 

• use of pre-placed, pre-routed macro generators to 
improve the quality of synthesized hardware and to 
reduce compile times. 

We are working on several longer term projects. 
These include 

• programming language and compiler support for 
parallel processing FPGA arrays with concurrent 
computation on multiple nodes [23], 

• compiler interaction with an interactive performance 
analysis system [24] so that pragmas can be inserted 
automatically into the C source code, and feedback 
from lower-level CAD tools is available to compiler 
and performance analysis system. 
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Note 

I. Note that this is not a semantically meaningful sequence of oper­
ations. A more realistic scenario is that the four instructions are 

separated by other instructions, possibly including control flow. 
The example is simplified for clarity. 

References 

I. R. Razdan and M.D. Smith, "A High-Performance Microarchi­

tecture with Hardware-Programmable Functional Units," Pro­
ceedings of the 27th Annual International Symposium on Mi­
croarchitecture, lEEE/ACM, Nov. 1994, pp. 172-180. 

2. R. Wittig and P. Chow, "Onechip: An FPGA Processor with 
Reconfigurable Logic," Proceedings of IEEE Symposium on 

FPGAsfor Custom Computing Machines, 1.M. Arnold and K.L. 
Pocek (Eds.), Napa, CA, Apr. 1996. 

3. 1.R. Hauser and J. Wawrzynek, "GARP: A MIPS Processor with 
a Reconfigurable Coprocessor," Proceedings of IEEE Workshop 
on FPGAs for Custom Computing Machines, 1997,1. Arnold 
and K.L. Pocek (Eds.), Napa, CA, Apr., pp. 12-21. 

4. S. Hauck, T. Fry, M. Hosler, and 1. Kao, 'The Chimera Recon­
figurable Functional Unit," Proceedings of IEEE Symposium on 
FPGAsfor Custom Computing Machines, 1.M. Arnold and K.L. 
Pocek (Eds.), Napa, CA, Apr. 1997, pp. 87-97. 

5. C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, 1. 
Arnold, and M. Gokhale, "The Napa Adaptive Processing Archi­
tecture," Proceedings of IEEE Symposium on FPGAsfor Custom 
Computing Machines, 1.M. Arnold and K.L. Pocek (Eds.), Napa, 
CA, Apr. 1998. 

6. M. Rencher and B. Hutchins, "Automatic Target Recognition on 
Splash 2," Proceedings of IEEE Symposium on FPGAs for Cus­
tom Computing Machines, 1.M. Arnold and K.L. Pocek (Eds.), 

Napa, CA, Apr. 1997. 
7. SUIF Group. Suif Compiler System. http://suifstanford.edu, 

1997. 
8. M. Gokhale and 1.M. Stone, "Automatic Allocation of Arrays to 

Memories in FPGA Processors with Multiple Memory Banks," 
Proceedings of IEEE Symposium on FPGAs for Custom Com­
puting Machines, 1.M. Arnold and K.L. Pocek (Eds.), Napa, CA, 
Apr. 1999. 

9. M. Gokhale and 1. Stone, "Napa C: Compiling for a Hybrid 
RisclFPGA Architecture," IEEE Symposium on FPGAs for Cus­
tom Computing Machines, K. Pocek and 1. Arnold (Eds.), Napa 
Valley, CA, Apr. 1998, pp. 126-135. 

10. M. Gokhale and E. Gomersall, "High Level Compilation for Fine 
Grained FPGAS," Proceedings of IEEE Symposium on FPGAs 
for Custom Computing Machines, 1.M. Arnold and K.L. Pocek 
(Eds.), Napa, CA, Apr. 1997. 

II. E. Waingold, M. Taylor, P. Srikrishna, V. Sarkar, W. Lee, V. Lee, 
1. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, 
and A. Agarwal, "Baring it All to Software: Raw Machines," 
IEEE Computer, 1997, pp. 86-93. 

12. T. Callahan and J. Wawrzynek, "Instruction Level Parallelism 
for Reconfigurable Computing," Proceedings of FPL '98, Field­
Programmable Logic and Applications, 8th International Work­
shop, Estonia, Sept. 1998. Published in Springer-Verlag Lecture 
Notes in Computer, Hartenstein and Keevallik (Eds.). 

13. R. Harr, Nimble Compiler. http://www.arpa.mil/ito/psum1998/. 
1998. 

53 



www.manaraa.com

180 Gokhale, Stone and Gomersall 

14. I. Page, "Construction of Hardware-Software Systems from a 
Single Description," founal ofVLSI Signal Processing, vol. 12, 
1996, pp. 87- 107. 

15. M. Weinhardt, "Portable Pipeline Synthesis for FCCMS," Tech­
nical Report, Universitat Karlsruhe, 1996. 

16. M. Weinhardt and W. Luk, "Pipeline Vectorization for Recon­
figurable Systems," Proceedings of IEEE Symposium on FPGAs 
for Custom Computing Machines, J.M. Arnold and K.L. Pocek 
(Eds.), Napa, CA, Apr. 1999. 

17. T. Garverick, C. Rupp, and J. Arnold, Napa 1000. http:// 
www.national.comiappinfolmilaerolnapalOOOI. 1997. 

18. High Performance Fortran. Hpf Forum. http://www.crpc. 
rice.edulHPFFlhome.html, 1999. 

19. M. Lam, "Software Pipelining: An Effective Scheduling Tech­
nique for VLIW Machines," SIG-PLAN '88, June 1988. 

20. C.R. Rupp, D4 Language Reference Guide and Specification, 
1996. 

21. C.R. Rupp, D4 User's Guide, 1996. 
22. D. Green, Modern Logic Design, Addison-Wesley, 1986. 
23. M. Gokhale, Compiling for FPGA-Based Parallel Processors. 

http://www.sarnoffcom:8000/acshomelfpgahome.html, 1997. 
24. M. Martinosi, Performance and Synthesis Tools for Adaptive 

Computing. Ilhttp://www.ee.princeton.edu/mrmlresconjhtmi. 
1997. 

Maya B. Gokhale received the Ph.D. degree in Computer and In­
formation Science from the University of Pennsylvania in 1983. Dr. 
Gokhale has been involved in tools and architectures for FPGA-based 
configurable computing for the last eleven years. She was part of the 
Splash team at the Supercomputing Research Center and developed 
a data parallel C compiler that targeted the Splash-2 FPGA array. At 
Sarnoff Corporation, Gokhale extended the FPGA compiling tech­
nology to target hybrid processorlFPGA chips. She is currently Prin­
cipal Investigator of a DARPA-sponsored reconfigurable computing 
effort at the Los Alamos National Laboratory. 
maya@sarnoff.com 

54 

Janice M. Stone received the A.B . degree in mathematics from Duke 
University in 1962, and pursued graduate studies in mathematics at 
Georgetown University, and in logic and philosophy of science at 
Stanford University. She joined IBM Research in 1984, where her 
research interests focused on parallel algorithms and tools for devel­
opment and analysis of parallel programs. She is now an indepen­
dent contractor in Princeton, NJ, where her recent work combines 
compiler construction and pipeline scheduling for configurable com­
puting. 

Edson Gomersall has 14 years of experience in the areas of device 
modeling, circuit design, design methodology, software engineering, 
and reconfigurable computing. He has been granted two circuit de­
sign patents and published several technical papers. Mr. Gomersall is 
currently involved in design methodology relating to the implemen­
tation of large systems on a chip at National Semiconductor Corp .. 
edson@nsc.com 



www.manaraa.com

~, Journal ofYLSI Signal Processing Systems 24,181-209,2000. 
''''111 © 2000 Kluwer Academic Publishers. Printed in The Netherlands. 

Design-Space Exploration for Block-Processing Based Temporal 
Partitioning of Run-Time Reconfigurable Systems 

MEENAKSHI KAUL AND RANGA VEMURI 
Laboratory for Digital Design Environments, Department of ECECS, P. O. Box 21 0030, University of Cincinnati, 

Cincinnati, OH 45221-0030, USA 

Abstract. The reconfiguration capability of modem FPGA devices can be utilized to execute an application by 
partitioning it into multiple segments such that each segment is executed one after the other on the device. This 
division of an application into multiple reconfigurable segments is called temporal partitioning. We present an 
automated temporal partitioning technique for acyclic behavior level task graphs. To be effective, any behavior­
level partitioning method should ensure that each temporal partition meets the underlying resource constraints. 
For this, a knowledge of the implementation cost of each task on the hardware should be known. Since multiple 
implementations of a task that differ in area and delay are possible, we perform design-space exploration to choose 
the best implementation of a task from among the available implementations. 

To overcome the high reconfiguration overhead of the current day FPGA devices, we propose integration of the 
temporal partitioning and design space exploration methodology with block-processing. Block-processing is used 
to process multiple blocks of data on each temporal partition so as to amortize the reconfiguration time. We focus 
on applications that can be represented as task graphs that have to be executed many times over a large set of input 
data. We have integrated block-processing in the temporal partitioning framework so that it also influences the 
design point selection for each task. However, this does not exclude usage of our system for designs for which 
block-processing is not possible. For both block-processing and non block-processing designs our algorithm selects 
the best possible design point to minimize the execution time of the design. 

We present an ILP-based methodology for the integrated temporal partitioning, design space exploration and 
block-processing technique that is solved to optimality for small sized design problems and in an iterative constraint 
satisfaction approach for large sized design problems. We demonstrate with extensive experimental results for the 
Discrete Cosine Transform (DCT) and random graphs the validity of our approach. 

1. Introduction 

Reconfigurable Field Programmable Gate Arrays 
(FPGAs) [1-3] built of SRAM-based logic provide 
designers with flexible computing systems. In these 
devices, the state of the internal static memory 
cells determines the logic functions and interconnec­
tions resident within the FPGA device. This uncom­
mitted array of programmable logic and interconnect 
on these devices allows reconfiguration between algo­
rithm implementation on the devices. This advantage 
of FPGAs over Application Specific Integrated Cir­
cuits (ASICs) allows the user to use the same circuitry 
for completely different algorithms by configuring the 

device between applications. This design approach is 
generally referred to as Compile-Time or Static Re­
configuration [4]. Statically configured FPGAs have 
been used successfully in the rapid prototyping of de­
signs [5, 6]. The long fabrication times associated with 
ASIC design is eliminated. But the device capacity 
of FPGAs is far less than that of ASIC chips. There­
fore, when synthesizing large designs on FPGAs, usu­
ally multi-FPGA boards are used to increase device 
capacity. This necessitates spatial partitioning of the 
application. In this style of static FPGA design, the 
FPGA is configured once at the start of the application, 
and the same configuration continues till the execution 
ends. 
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However, by extending the idea of reconfiguration to 
intra-application reconfiguration an application which 
does not fit on the device is divided into multiple seg­
ments and mUltiple configurations ofthe same applica­
tion are loaded at run-time. This technique is referred 
to as Run-Time or Dynamic Reconfiguration (RTR) [4]. 
Current design tools provide support for static recon­
figuration, but little tool support exists for dynamic 
reconfiguration. 

When a design is partitioned into mutually exclu­
sive partitions that will execute serially on the recon­
figurable processor, the design uses Global Run Time 
Reconfiguration. All modem FPGAs, whether fully 
(XC4000, XCVOOO) or partially (XC6200, XCVOOO) 
reprogrammable, can support this reconfiguration step. 
In partially programmable FPGAs the inactive parts of 
the FPGA can be reconfigured at run-time even while 
other parts of the FPGA are active. This flexibility of 
partial reconfiguration can be exploited in a design ap­
proach where subsets of the application are reconfig­
ured as the application executes. This can reduce the 
time to reconfigure the FPGAs by making it possible 
to load only the necessary parts of the FPGA. How­
ever this increased flexibility also introduces a lot of 
complexity in the CAD process needed to design ap­
plications for such a design style. 

The temporal partitioning approach that we have 
undertaken focuses on generating global run time re­
configured designs from behavior specifications of the 
design. We perform run time reconfiguration in which 
the entire device is reprogrammed at the boundaries 
of the temporal segments and data is passed from one 
temporal segment to the next through a RAM which is 
not part of the reconfigurable logic. Due to this, struc­
tural design is not necessary; behavioral synthesis can 
be effectively used. 

A shortcoming of current automated temporal par­
titioning techniques is that they choose the underlying 
implementation of the components of their design be­
fore partitioning is performed. Since there are mUltiple 
implementations of the components of the designs that 
vary in the area/delay, it would be more effective to 
choose the design implementation while partitioning 
the design by exploring different design options. The 
search of the design space while partitioning would 
lead to better partitioned designs. 

Due to very high reconfiguration overheads for 
commercially available reconfigurable hardware, exist­
ing automated temporal partitioning techniques [7-11] 
usually focus on reducing the latency of the temporally 
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partitioned design by minimizing the number of tem­
poral partitions in the design. But, many DSP applica­
tions process an infinite or semi-infinite stream of input 
data. We will demonstrate that the design with mini­
mum latency may not be the best overall solution if we 
can process multiple inputs on each temporal partition. 
This technique, called block-processing can be used to 
reduce the the reconfiguration overhead. 

If the reconfiguration overhead is ignored, the la­
tency of a temporally partitioned design is usually less 
than the latency of a static design due to the larger area 
available. But since the reconfiguration overhead is an 
important factor in determining the run time of a design, 
an RTR system may perform poorly as compared to a 
static design if the reconfiguration overhead dominates 
the execution time of the design. To overcome the ef­
fects of high reconfiguration overhead, we demonstrate 
[12] how block processing can be introduced at a post­
processing step after temporally partitioning a design 
to increase the throughput. In the current work, we 
develop a temporal partitioning technique to incorpo­
rate block-processing and design space exploration and 
demonstrate how this integrated processing can be used 
to search for optimal temporally partitioned designs. In 
this paper, an Integer Linear Programming (ILP) based 
integrated temporal partitioning and design space ex­
ploration technique forms a core solution method. For 
small sized design problems we solve the ILP model to 
obtain an optimal solution, and we demonstrate the ef­
fectiveness of our technique with experimental results. 
To handle large design problems with our technique we 
also present an iterative refinement procedure that it­
eratively explores different regions of the design space 
and leads to reduction in the execution time of the parti­
tioned design. The ILP based integrated temporal par­
titioning and design space exploration technique forms 
a core solution method which is used in a constraint 
satisfying approach to explore different regions of the 
design space. Again, we demonstrate the effectiveness 
of this technique with experimental results. 

We present the motivation of our work in Section 2, 
previous work in Section 3, the design flow of our tool 
in Section 4, the architecture model, design process 
model and memory model in Section 5, the ILP model, 
the optimal search algorithm and its results in Section 6, 
the iterative algorithm and its experimental results in 
Section 7, results on random graphs and comparison 
with other works in Section 8, some discussions on 
extensions and limitations in Section 9, and the con­
clusions in Section 10. 



www.manaraa.com

2. Motivation 

In the following discussion we present the problem of 
task level design space exploration in temporal parti­
tioning and how its integration with block-processing 
techniques can improve the execution time of an RTR 
design. 

Input Specification as Task Graphs: Growing design 
complexity has lead designers to generate designs at 
higher levels of abstraction, such as the behavior level. 
The designer can concentrate on the required behav­
ior of the application, rather than its implementation. 
Also simulation at behavior level is much faster than 
Register Transfer level (RTL) or gate level simulation. 
In this paper, we concentrate on behavior level design 
descriptions to be temporally partitioned. We assume 
the input specification to be a task graph, where each 
task consists of a set of operations. Task boundaries can 
be given by the designer or, tasks can be automatically 
derived from the behavior specification by clustering 
or template extraction techniques [13]. Our approach 
can handle tasks of any level of granularity. 

Design Alternatives for Tasks: Depending on the re­
source/area constraint for the design, different imple­
mentations of the same task which represent different 
area-time tradeoff points can be contemplated. These 
different implementations are design points/Pareto 
points [14] in the design space of a task. In Fig. 1, a 
task and two different implementations of the task are 
represented. Design Point 1 uses two adders and four 
mUltipliers, and is scheduled in two control steps. De­
sign point 2, on the other hand uses less resources and 

!~' ~\i.· : * * * *: 
! ~ 
• + + 
i. .............. rl!~k ................... • 

.M ... M .... ~ .... M I M M ~ ... 2')j{"')j{' 2¥ . * 

Design Point 1 : 4 multipliers, 2 adders 3' + 

Design Point 2 : 2 multipliers, 1 adder 

Figure I. Multiple design points for a task. 
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more control steps. If a task is implemented with less re­
sources then the operations in the task will be executed 
serially, thus increasing the latency of the task. On the 
other hand, an implementation with more resources re­
duces the latency but increases the area. Choosing the 
best design point for each task may not necessarily re­
sult in the best overall design for the specification. The 
most optimal point for a task in the context of optimiz­
ing the overall throughput of the design will depend 
on the architectural constraints of the reconfigurable 
hardware and the dependency constraints among the 
tasks. In the subsequent discussion we will express the 
latency of a design point in terms of total execution 
time and not in number of clock cycles. 

If the number of design alternatives for a task are 
too many, then exploring the large design space can 
become too computationally expensive. In such cases, 
a few 'candidate' design points must be obtained by 
effective design space pruning techniques, such as dis­
cussed in [13]. Since there is a gap between the be­
havior description and the final synthesized design, 
it is important that we have accurate synthesis esti­
mates for the tasks. As the size of a task in the task 
graph is quite small, we use sophisticated High-Level 
Synthesis estimators which incorporate layout estima­
tion techniques. Such partitioned designs, can then 
be predictably taken down to the actual FPGA layout 
[15, 16]. 

Block-Processing in Temporally Partitioned Designs: 
In many application domains e.g., Digital Signal Pro­
cessing, computations are defined on very long streams 
of input data. In such applications an approach known 
as block-processing is used to increase the throughput 
of a system through the use of parallelism and pipelin­
ing in the area of parallel compilers [17] and VLSI 
processors [18]. Block-processing is not only benefi­
cial in parallelizing/pipelining of applications, but in 
all cases where the net cost of processing k samples 
of data individually is higher than the net cost of pro­
cessing k samples simultaneously. We can also apply 
the concept of block-processing to a single processor 
reconfigurable system to speedup the processing time. 

Fig. 2 illustrates the use of block-processing to speed 
up computation in a temporally partitioned design. 
The task graph consists of 4 tasks A, B, C, D. It 
is partitioned into two temporal partitions as shown 
in Fig. 2(b). The latency of temporal partition 1 is 
50 ns and of partition 2 is 80 ns. The reconfigu­
ration time is 500 ns. The latency of the design is 
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Figure 2. Temporally partitioned design example. 

50 +500 + 80 + 500 = 1130 ns. A single iteration of 
the task graph executes in 1130 ns. Now three iter­
ations of this temporally partitioned design will take 
3 x 1130 = 3390 ns. However if we perform block­
processing by sequencing all 3 computations on each 
temporal partition, the time taken for the execution is 
(50 + 50 + 50) + 500 + (80 + 80 + 80) + 500 = 
1390 ns. Thus block-processing amortizes the recon­
figuration overhead over the 3 computations. Block­
processing is possible only for applications that process 
a large stream of inputs. We represent such applications 
by a task graph having an implicit outer loop as shown 
in Fig. 2(a). Note that block-processing is possible if 
there are no dependencies among the computations for 
different inputs. In compiler terminology this means 
there should be no loop-carried dependencies due to 
the implicit outer loop, among different iterations of 
this loop. In this paper, we deal with applications for 
which no dependencies among computations is present. 
Most DSP applications such as Image processing, Tem­
plate Matching, Encryption algorithms etc. fall in this 
category. The examples investigated in the RC com­
munity include DCT, FFT, DFT, FIR filter and various 
image averaging, smoothing and filtering algorithms. 

Design Pt. 1 : Area = J 00, DeJay = lOOns 

Design Pt. 2 : Area = 200. DeJay = 50 ns 

Design Pt. 1 : Area = ISO, DeJay = 200 ns 

Design Pt. 2 : Area = 300, DeJay = 70 ns 

Reconfiguration Time = 500 micro sec 
FPGA size = 300 

Also many matrix based computations ego LU De­
composition for solving linear equations, polynomial 
interpolation, extrapolation etc. are acyclic in nature. 

Integrating Design-Space Exploration and Block­
Processing in Temporal Partitioning: For FPGA 
based architectural synthesis, the constraints of area 
of the FPGA in terms of CLBs (Configurable Logic 
Blocks)IFGs (Function Generators) and memory are 
to be met by the partitioned design. The design alter­
natives or solutions will vary in the number of tempo­
ral partitions and the latency of the partitioned design. 
For the spatial partitioning problem (partitioning of 
the design for a fixed number of co-existing FPGAs 
on a board), increasing the number of partitions has 
the effect of increasing the overall area for the design, 
and directly affects the latency of the design. Increas­
ing the area, generally increases the number of oper­
ations that can execute in parallel (if no dependency 
constraints exist) and thus decreases the latency of the 
design. However, for a temporal partitioning system, 
increasing the number of partitions increases the area 
available for the design, but this increase is 'over time' 
and not 'over space'. This increase in number of par­
titions mayor may not result in the reduction of the 
latency of the design. 

When the reconfiguration overhead is very large 
compared to the execution time of the task it is clear 
that minimizing the number of temporal partitions will 
achieve the smallest latency in the overall design. In 
the resultant solution each task will usually be mapped 
to the smallest area design point among the set of de­
sign points for a task. However, it is not necessary that 
the minimum latency design is the best solution. We 
illustrate this idea with an example. In the Fig. 3(a) a 
task graph is shown. Each task has two different de­
sign points on which it can be mapped. Two different 

Design Pt. J Design Pt. 2 
Area = 100. Delay = JOO ns Area = 200, Delay = 50 ns 

Design Pt. J Design Pt. 2 

Area = 150. Delay = 200 ns Area = 300. Delay = 70 os 

(a) Latency = 500 rnu + 100 ns + 200 ns Latency = 2*500 rnu + 50 ns + 70 ns 
(b) (C) 

Figure 3. Design space exploration. 
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solutions (b) and (c) are shown. If minimum latency so­
lution is required then solution (b) will be chosen over 
solution (c) because the latency of (b) is 500.3 /-Lsec 
and latency of (c) is 1000.12 /-Lsec. Now, if we use (b) 
and (c) in the block-processing framework to process 
5000 computations on each temporal partition, then the 
execution time for solution (b) is 2000 /-Lsec and for so­
lution (c) is 1600 /-Lsec. Therefore if we can integrate the 
knowledge about block-processing while design space 
exploration is being done, then it is possible to choose 
more appropriate solutions. 

The price paid for block-processing is the higher 
memory requirements for the reconfigured design. We 
call the number of data samples or inputs to be pro­
cessed in each temporal partition to be the the block­
processing factor, k. This is given by the user and is 
the minimum number of input data computations that 
this design will execute for typical runs of the applica­
tion. The amount of block-processing is limited by the 
amount of memory available to store the intermediate 
results. 

3. Previous Work 

Design for reconfigurable architectures involves tem­
poral and spatial partitioning and synthesis [15]. There 
has been significant research on spatial partitioning 
[19-21] and synthesis [16, 22], though the research 
on temporal partitioning is in a nascent stage. Cur­
rently many designers perform temporal partitioning 
manually [23,24] or the designer needs to specify the 
partitioning points of the application to the partitioning 
tool [25]. Luk, Shirazi and Cheung [26] take advantage 
of the partial reconfiguration capability of FPGAs and 
automate techniques of identifying and mapping re­
configurable regions from pre-temporally partitioned 
circuits. Chu et al. [27] present a partial evaluation 
technique in their circuit generator. In this technique 
the programmer can provide partial evaluation routines 
for his components. These partial evaluation routines 
can then be used to reduce the complexity of the com­
ponent based on its inputs available at run-time. This 
technique also utilizes the partial programming capa­
bility of the FPGAs, however the programmer has to 
explicitly define the components that can be partially 
evaluated and also the method to do so. 

Existing automated temporal partitioning tech­
niques, extend scheduling and clustering techniques of 
high-level synthesis [7-9, 11] and focus on minimizing 
the number of partitions of the design. In [8, 9, 11] the 
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temporal partitioning technique involves partitioning 
gate-level designs. Since the design to be partitioned 
is already synthesized, different synthesis options for 
achieving partitioned solutions with lower execution 
times cannot be explored. Since the reconfiguration 
overhead for currently available hardware is very large 
and dominates the latency of the design, we need to 
concentrate on techniques to minimize the effects of 
the reconfiguration overhead. We present an automated 
technique for DSP style applications, that automati­
cally sequences multiple computations in each tempo­
ral partition to reduce the reconfiguration overhead. To 
our knowledge, no existing tools perform automated 
block-processing techniques to reduce the reconfigu­
ration overhead in the context of reconfigurable pro­
cessors. Our technique can also simultaneously han­
dle multiple design constraints, e.g., FPGA resources, 
on-board memories, and perform design exploration 
that cannot be handled by current techniques in [7-9, 
11]. Kaul and Vemuri [10] presented a mathematical 
model for combined temporal partitioning and synthe­
sis. In this approach, synthesis cost exploration is per­
formed at an operation level in the task graph, and the 
number of alternative solutions explored becomes very 
large. This approach can be used to synthesize small­
scale behavior specifications. Kaul and Vemuri also 
demonstrated the technique of integrated temporal par­
titioning and design-space exploration for large design 
problems by using an iterative constraint satisfaction 
approach [28]. The design space exploration was per­
formed without considering block-processing, so the 
goal of the system was to minimize the latency of the 
design. 

Wirthlin and Hutchings [29] developed an automated 
technique that uses partial reconfiguration to load cus­
tom instructions at run-time. The instructions in an ap­
plication are loaded in a demand-driven manner, and 
unused instructions are removed. This work is in con­
trast to our approach as it performs the loading and 
unloading of instructions at run time, whereas in our 
approach the partitioning into global configurations is 
performed before the design executes and not at run 
time. 

Kalavade [30] presents an extended bi-partitioning 
problem for co-design, where partitioning and design 
point selection is performed sequentially, unlike our 
combined approach. ILP models of other partitioning 
and synthesis problems have been addressed by re­
searchers. Simultaneous spatial partitioning and syn­
thesis is formulated as an ILP by Gebotys in [31]. 
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Niemann and Marwedel [32] present an ILP-based 
methodology for hardware software partitioning of co­
design systems. Resource constrained scheduling and 
binding at operation level for ASICs has been formu­
lated as an ILP by Gebotys in [33]. 

Our temporal partitioning approach is for a globally 
configured system and we do not consider the partial 
reconfiguration approach for designing a RTR system. 
We attempt to perform temporal partitioning at a high­
level together with design-space exploration. No other 
approach to temporal partitioning has attempted to do 
so. The disadvantage of our technique is that it can­
not make use of the partial reconfiguration capability of 
the FPGAs. This would involve FPGA-specific tools as 
the different FPGAs have different kinds of partial re­
configuration capabilities. However, our current work 
is focussed on developing a general purpose tool that 
can be used to develop temporal partitioned systems 
for any class of FPGAs on which global reconfigura­
tion can be performed. Some of the partial reconfigu­
ration techniques [26] assume that temporal partitions 
already exists when they attempt to find matching cir­
cuits across temporal partitions. Our technique can be 
used to automatically generate the temporal partitions 
that can then be used by such techniques to generate 
partial reconfigurations. 

Contribution of this work: The current work makes 
several important contributions to the area of reconfig­
urable design synthesis. It has the following primary 
features that distinguish it from other works: 

• We have integrated the problem of design space ex­
ploration into partitioning by using the idea of con­
sidering multiple design points for each task in the 
task-graph. This reduces the complexity of the de­
sign space search for the high-level synthesis process 
by making it concentrate on small portions of the 
design. 

• Our approach performs design space exploration at 
the behavior level of abstraction, so that multiple de­
sign options are explored while performing temporal 
partitioning and appropriate design points based on 
the constraints of the architecture are chosen. 

• Unlike traditional approaches that concentrate on 
minimizing the number of temporal partitions of the 
design, our approach introduces a novel concept of 
block-processing multiple computations to reduce 
the reconfiguration overhead and demonstrates that 
a temporal partitioning approach which combines 
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block-processing and design-space exploration can 
reduce the design execution time. 

• By using ILP as the core engine in an iterative 
search process we have the flexibility to produce 
optimal/near-optimal partitioned designs. User con­
trolled parameters influence the search process. If the 
search for an optimal solution is too time intensive, 
then suitable search parameters can be given to pro­
duce near-optimal results in less run-time. 

4. System Design Flow 

In Fig. 4, we present the design flow for building a 
Run-Time Reconfigured (RTR) design. The input spec­
ification is a behavior level design description of the 
application to be implemented on the reconfigurable 
hardware. The input specification is shown in Fig. 5. 
It consists of an acyclic data flow task graph, with an 
outer implicit loop. The implicit loop signifies the suc­
cessive items of input data that will be executed on this 
task graph. There are no inter-loop dependencies in the 
task graph due to this implicit loop, i.e., the processing 
of each input data is independent of any other input. 

Macro Behavior Task Block-Processing 
Component Graph Constraints Factor 
Library ~ 

Configuration 
Sequencer 

Figure 4. System design flow. 
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Thus it is possible to perform block-processing for this 
task graph. 

Task Estimation: First, the behavior level estimation 
engine, which is part of the SPARCS design environ­
ment [15], generates multiple design points for each 
task separately based on the architecture and user con­
straints. The architecture constraints are the resources 
available on the reconfigurable hardware, the user con­
straints are the maximum clock-width for the design. 
The HLS tool makes use of a component library, char­
acterized for the particular reconfigurable processor, to 
estimate the resource and delay. 

Temporal Partitioning: Next, the temporal partition­
ing tool divides the task graph into multiple temporal 
segments, while mapping each task to its appropriate 
design point. We discuss the ILP formulation used to 
solve the multi-constraint temporal partitioning prob­
lem later in detail. 

Design Transformation: Some design transforma­
tions are needed so that block-processing can be 
performed on each temporal partition. This design 
transformation and the software code to sequence the 
configurations from the host is generated in this step. 

High Level Synthesis: The high level synthesis sys­
tem in SPARCS [15] is used to generate the RTL design 
for each temporal segment. 

Logic/Layout Synthesis: We use commercial tools, 
for logic synthesis (Synplify tools from Synplicity) and 
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layout synthesis (Xilinx Ml tools) to convert the RTL 
description of each configuration into bitmap files. 

5. Architecture, Design Process 
and Memory Model 

5.1. Reconfigurable Architecture Model 

In Fig. 6, the reconfigurable architecture on which 
the Run-Time reconfigured design is to be mapped is 
shown. It consists of a reconfigurable hardware com­
municating with an external memory. Each temporal 
partition is mapped to the reconfigurable hardware, and 
the data flowing between two temporal partitions is 
mapped to the memory. The host stores all the tempo­
ral configurations. It interacts with the reconfigurable 
hardware to load new configurations and with the mem­
ory to load input data and retrieve output data at the end 
of the execution of the design. Except for the first and 
last temporal configuration it does not read or write to 
the memory at any other intermediate configuration. 

5.2. Design Process Model 

• Each behavior specification is in the form of a acyclic 
task graph. A task however has no restrictions and 
can contain any control structure within it. Each task 
is indivisible and parts of a task cannot be mapped 
across partitions. 

• Each task has a set of distinct implementation options 
called design points. These are usually obtained by 
a high level estimation tool or can be specified by 
the user. No possible restrictions on the implemen­
tation of a task is required, only that the area and 
delay associated with each design point should be 
available. 

Data 

MEMORY 

Data 

ration Reconfigurable ---:. 
:Configu 
1 _____ _ 

Hardware 

Figure 6. RTR architecture model. 
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• The high level synthesis process that will be used to 
synthesize the tasks in each temporal partition is ex­
pected to parallelize the intermediate memory trans­
fer with the execution of operations in the task graph. 
We are assuming that there is enough slack available 
to do so. Therefore we do not add the intermediate 
data transfer time to the execution time of the de­
sign. If a simple synthesis system is used that does 
all the memory access in serial with the operations, 
then we need to add the memory access times in the 
execution time of the design. We have discussed this 
further in Section 9. 

• The estimation process that develops the design point 
should be closely related to the actual synthesis pro­
cess that will synthesize the temporal partition after 
the partitioning is performed. For our design pro­
cess this implies that the area of the design point 
should reflect the data path, controller and routing 
resources required for the task. Xu and Kurdahi [16] 
and Ouaiss et al. [15] discuss some of the estimation 
techniques that incorporate low level details in the es­
timation process. However, if the estimation process 
is not a true reflection of the ultimate synthesis pro­
cess then it is required that the user of our system 
should generate experimentally a factor that reflects 
the deviation of the actual values from the estimated 
ones. The area of the FPGA should be reduced by 
this factor. 

5.3. Memory Model 

• The host writes to the memory of the reconfigurable 
architecture before the start of the first configuration 
to place all the data that is to be read as input by 
the design, and reads from the last configuration's 
memory all the output data of the design. 

• The intermediate data that is needed to be transferred 
from one configuration to another is written into the 
memory of the reconfigurable architecture. 

• All data to be read in a configuration and written 
in a configuration is alive for the existence of the 
whole configuration. The input data from the host 
is present from the first configuration till the last 
configuration it is read from. The output data to the 
host is present from the configuration it is written till 
the last configuration. Data written in a configuration 
will remain alive in all subsequent configurations till 
it is consumed. 

• The model for block processing is shown in Fig. 7. 
Each configuration processes the whole block of k 
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Figure 7. Block-processing model. 

computations completely and stores the intermedi­
ate data. This is repeated for all configurations. Cur­
rently, we does not support pipelining of the different 
computations in the same temporal partition. There­
fore the delay for k computations is then equal to 
k*delay for processing one computation. 

6. Temporal Partitioning and Design Space 
Exploration by an Optimal Search Algorithm 

The inputs to our Temporal Partitioning system are­
(1) Behavior Specifications (2) Target Architecture 
Parameters (3) Block-processing Factor. 

In formal notation, the inputs are stated as 

T 

B(env, tj) 

k 

set of tasks in the task graph. 
a directed edge between tasks, t;, t JET, 

exists in the task graph. 
number of data units to be communicated 

between tasks t; and tj. 
number of data units to be read by task 

tj from the environment. 
numbe r of data units to be written from 

task t; to the environment. 
resource capacity of the reconfigurable 

processor. 
memory size of the RTR architecture. 
reconfiguration time of the reconjigurable 

processor. 
the block-processing factor for the 

design. 

The behavior specifications are in the form of a di­
rected graph called the Task Graph. The vertices in the 
graph denote tasks, and the edges denote the depen­
dency among tasks. Data communicated between two 
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tasks, B(ti, tj), will have to be stored in the on-board 
memory of the processor, if the two tasks connected 
by an edge are placed in different temporal partitions. 
The target architecture parameters specify the under­
lying resources and the reconfiguration time, C T, for 
the device. Typically, resource capacity, Rman is the 
combinational logic blocks/function generators on the 
FPGAs ofthe reconfigurable device. Mmax, is the mem­
ory for storage of intermediate data available on the re­
configurable processor. k, the block-processing factor 
is the lower bound on the number of computations that 
this design will usually perform. The total intermedi­
ate data for k computations of the task graph has to fit 
in the memory Mmax of the RTR processor. The user 
can give k to be the minimum number of iterations of 
the implicit loop, I, shown in Fig. 5 for typical runs of 
the application. 

6. I. Preprocessing 

Design Point Generation: Each task in the task graph is 
processed by a design space exploration and estimation 
tool [15] which is part of a high level synthesis system. 
The high level estimation tool generates a set of design 
points for each task. Each design point is characterized 
by its area and latency. Each task t will have a set of 
estimated design points, Mt . We state this formally as 

Mt 

R(m) 
D(m) 

set of design points, m, for a task t E T. 
area of a design point m E M t • 

latency of a design point m E M t • 

Partition Bounds Estimation: To find the number of 
partitions over which the temporal partitioning solution 
should be explored we calculate two bounds: 

1. Lower Bound: For calculating the lower bound on 
number of partitions N~in' we sum the minimum area 
design point, m, for each task. This value divided 
by the FPGA area will be the minimum number of 
partitions required to obtain a solution. 

N~in = L ~(m), {m I \:1m E M I , min(R(m»} 
lET max 

(I) 

2. Upper Bound: Ideally, we would like to establish an 
upper bound on the number of partitions needed to 
be explored by the partitioner when the maximum 
area design point for each task is chosen. However, 
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we cannot accurately establish, this upper bound on 
the maximum number of partitions. This is because 
if a task is too large to fit in some temporal partition, 
it must go to a later partition. Then all the descen­
dents of this task also cannot occupy the earlier tem­
poral partition even if they can fit in it because the 
dependency among the tasks will be violated. This 
will leave some area on temporal partitions unoc­
cupied due to dependency constraints, and the task 
graph will not fit even though there is enough area 
left unoccupied on the partitions. We could have es­
tablished an upper bound on the maximum number 
of partitions to be equal to the number of tasks in 
the task graph. However, this is a very pessimistic 
bound and usually so many partitions need not be 
explored. We first define, the minimum number of 
partitions, N~in' that need to be explored if the maxi­
mum area design point for each task is mapped by 
the partitioner, to be 

N~ill = L ~(m), {m I \:1m E M I , max(R(m»} 
lET max 

(2) 

To determine the upper bound on the number of tem­
poral partitions that need be explored to get an opti­
mal solution, we define a user controlled parameter y , 
called the Partition Relaxation. y defines the number 
of partitions beyond N~ifl that must be explored while 
searching for better solutions. We have introduced pa­
rameter, y, so that a user can direct the partition space 
search if the user has more knowledge of the solution 
to the problem. Or, this evaluation of y can be be done 
automatically by the tool using heuristic techniques. 
Using a heuristic, if we map the maximum area de­
sign points for each task we arrive at a solution with 
partition size Nil. This can be an upper bound on the 
partition size. If Nil > N~in' then y = Nil - N'~in' We 
give an example of how this can be done in Fig. 8. 
A task graph annotated with the maximum area of 
each task is shown. If Rmax is 100, then we calculate 
N~in to be 4 partitions. A heuristic algorithm maps the 
tasks as shown into 6 partitions. Therefore Nil = 6, 
and y = 6 - 4 = 2. The optimal solution for this 
graph is obtained in 5 partitions. We claim that any 
solution obtained by a heuristic using the maximum 
area (minimum delay) design points will never have its 
number of partitions less than that of an optimal so­
lution for the same graph. We are currently studying 
how to achieve tighter upper and lower bounds for par­
tition size and incorporating them automatically in our 
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Figure 8. Generation of partition size upper bound. 

algorithm. However, the facility of giving y will still 
be provided to the user. 

In the worst case, the total number of partitions to be 
explored range from the partition lower bound, N~in' 
to the number of tasks in the task graph, 1 T I. Therefore 
the value of y can range from 0 to 1 T 1 - N~in. We may 
not get the optimal solution possible for the task graph 
if the value of y is not set correctly. 

6.2. Partition Space Exploration Algorithm 

To explore better solutions for the temporal partitioning 
problem, we need to explore more than one partition 
bound. The partition bound is the number of partitions 
for which the current model has been formed and a so­
lution is being explored. Finding the ideal partitions for 
the overall optimal solution is an iterative procedure, 
shown in Fig. 9. Informally, the algorithm consists of 
the following steps 

I. The starting partition bound is N = N~in. 
2. Obtain an optimal solution for the given partition 

bound, N. The design execution time achieved af­
ter solving for this partition bound is Da. If N = 
N~in + y, then stop. 

3. Increase the partition bound, N = N + I, and re­
formulate the problem with the new partition size. 
Also introduce a design execution time constraint 
so that the result is bounded by the execution time 
delay already achieved, Da. Go to step 2. 
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We calculate the bounds on the number of partitions, 
N~in and N~in' as described earlier. We start the search 
at N~in and obtain an optimal solution, by forming 
and solving an ILP model of the temporal partition­
ing problem. The details of the model are described in 
Section 6.2.1. For the first ILP model there is no upper 
bound on the constraint on the execution time of the 
design. The result of solving this model is a temporal 
partitioning solution for N partitions and the execution 
time Da of the solution. We now relax N by 1, form 
and solve the ILP model again. This time since we 
are looking for a better solution than the one we have 
already achieved, Da is the execution time constraint 
for the new ILP model. We continue to relax N and 
look for better solutions until the value of N reaches 

N~in + y. 

6.2.1. 1LP Formulation for Design Space Explora­
tion. We build the temporal partitioning model for 
the given tasks and their design points and the values 
of Nand k. In the following discussion we present the 
variables and equations of the ILP model. 

Variable Ytpm models partitioning and design point 
selection for a task and is described formally as 

if task t E T is placed in partition p, 
I :::: p :::: N, using design point m E M t 

otherwise 
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Algorithm ReJineYartition-BoundO 
begin 
N~in +- MaxAreaPartitionsO 
N:nin +- MinAreaPartitionsO 
N +- N:nin 1* starting partition bound * / 
FormILPModelO 1* Model with no execution time constraint * / 
Da +- SolveILPModeLOptimalO 
while Da = 0 and N < N~in + 'Y 1* Partition bound was infeasible * / 

N +- N + 1 /* next partition bound * / 
FormILPModelO /* Model with no execution time constraint * / 
Da +- SolveILPModeLOptimalO 

end while 

while N < N~in + 'Y 

N +- N + 1 1* Relax N * / 
FormILPModelO 1* Model with execution time constraint:::; Da * / 
D~ +- SolveILPModeLOptimalO 
if D~ =1= 0 /* solution is feasible * / 

Da +- D~ 
end if 

end while 
return(Da ) 1* return with the last known best solution * / 

end Algorithm ReJine_Partition-Bound 

Figure 9. Partition refinement procedure. 

where, N is bound on the number of partitions. earlier than a task on which it is dependent. 

Variable Ytpm is a 0-1 variable. 'i12 , 'itl ---+ t2, 'iP2, 1 :s P2 :s N - 1 

Uniqueness Constraint: Each task should be placed 
in exactly one partition among the N temporal parti­
tions, while selecting one among the various design 
points for the task. 

: L L YtlPlml + L Yt2P2m2:S I (4) 

N 

'it E T: L L Ytpm = 1 (3) 
mEM, p=1 

Temporal Order Constraint: Because we are parti­
tioning over time, a task tl on which another task t2 is 
dependent cannot be placed in a later partition than the 
partition in which task t2 is placed. It has to be placed 
either in the same partition as t2 or in an earlier one. This 
constraint makes sure that the dependency constraints 
among the tasks are maintained. No task should execute 

mlEM'1 P2<Pl:'ON m2EM'2 

Resource Constraint: The sum of area costs of all the 
tasks mapped to a temporal partition must be less than 
the overall resource constraint of the reconfigurable 
processor. Typical FPGA resources include function 
generators, configurable logic blocks etc. Similar equa­
tions can be added if multiple resource types exist in 
the FPGA. 

'ip,1 :s p :s N: L L(Ytpm * R(m)) :s Rmax (5) 
mEM, tET 

Memory Constraint: Intermediate data due to data 
transfer among dependent tasks will be stored in a 
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partition under two conditions. If the memory has been 
written in an earlier partition, and is to be read in this 
partition or any partition later than this partition. Or, 
if memory is being written in the current partition and 
is destined to be read in a later partition. Data transfer 
through memory will not take place if two dependent 
tasks are placed in the same temporal partition. Vari­
able W Pll 12 models data transfer requirement across 
partition boundaries for dependent tasks. It is stated 
formally as 

if task t] is placed in any partition 
I ... p - I and t2 is placed in any 
of p ... Nand t] -+ t2 

if task t] is placed in partition p and t2 
is placed in any of p + 1 ... N 
and tl -+ t2 

° otherwise 

W pll 12 is a 0-1 variable. It is a secondary variable which 
is described in terms of the Ylpm variables. 

The intermediate data needs to be stored and should 
be less than the memory, Mmax. of the reconfigurable 
processor. The variable W pll 12' if 1, signifies that t] 

and t2 have a data dependency and are being placed 
across temporal partition p. Therefore the data being 
communicated between them, B(tl, t2), will have to 
be stored in the memory of partition p. The follow­
ing equation represents the memory constraint. It con­
tains terms to represent the intermediate data transfer 
due to dependent tasks as discussed earlier. Since our 
memory model is such that all external inputs and out­
puts with the host also takes place through the mem­
ory, the equation also contains terms to represent the 
amount of data that has to read as input from the envi­
ronment(host) and written out to the environment(host) 

by the tasks. 

Vp,l ::: p ::: N: L L L YIP2m * B(env, t) * k 
lET p~p2~N mEM, 

+ L L LYIP3m *BCt,env)*k 
lET ]~P3~P mEM, 

+ L L (Wp1112 * B(tl, t2) * k) ::: Mmax (6) 
12ET 11-+12 

As discussed earlier the variable W pll 12 has to model 
communication among tasks which can be mapped 
to adjacent and non-adjacent temporal partitions. In 
Fig. 10, we show how this variable models data transfer 
for a small taskgraph fragment. In the example shown 
there is no data transfer from the host only tasks com­
municating to each other. We show in the figure the 
original equations used to model the constraints for 
temporal partitions 2 and 3. The result equations show 
the Wpll12 variables which will be 1 in the mapping of 
tasks to partitions shown in the example and the con­
straints which has to be satisfied. W pIlI, are non-linear 
terms and can be generated by the following set of 
equations: 

Vp,l ::: p::: N, Vt2 E T, "It] -+ t2: Wpll12 

2: L L YIIPlml * L L YI2P,m, (7) 
I~PI <p ml EM'I p~p2~N m2EM'2 

Vp, 1 ::: p ::: N, Vt2 E T, Vtl -+ t2: Wpllt2 

2: L YI,pml * L L Yt2P,m, (8) 
mlEM'1 p+I~P2~N m2EM, 

Equations (7) and (8) are non-linear. We can use lin­
earization techniques [34, 35] to transform the non­
linear equations into linear ones, so that the model can 

Temporal 
Partitions 

Tasks MODELLING EQUATIONS: 

W *B(l ,2)*k + W * B(1 ,3)*k + W * B(2,3)*k <= M 
212 213 223 max 

W3t2B(l,2)*k + ""313* B(l,3)*k + 'j23* B(2,3)*k <= Mmax 

2 RESULT EQUATIONS: 

W *B(1,2)*k + W * B(I,3)*k + W * B(2,3)*k <= M 
212 213 223 max 

3 W * B(I,3)*k + W * B(2,3)*k <= M 
313 323 max 

Figure 10. Memory constraint. 
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be solved by a Linear Program solver. Linearization 
techniques have been used successfully before in [10] 
to solve the combined temporal partitioning and syn­
thesis problem. 

Execution Time Constraint: When the problem is for­
mulated we have as input the partition bound N over 
which the current solution is to be explored. Variable 
1] is the actual number of partitions finally used in the 
solution and will be less than or equal to N. Varia­
ble dp models the execution time of a temporal 
partition. 

1] = Number of partitions actually used in solution. 

d p = execution time of partition p. 

1] is an integer variable and dp can be an integer or real 
variable depending on whether the latency values are 
integer or real. The following definitions will be used 
to generate the execution time constraint. 

Da constraint on the execution time of the 
design. 

Tt set of tasks t; E T, where "Iti E T, 
--.(t; ~ ti), (leaf tasks ofT). 

T, set of tasks ti E T, where "It; E T, 
--.(ti ~ ti), (root tasks ofT)· 

t; ~ ti a directed path from t; E T to ti E T. 
p 

PI!!., {ti ~ ti I (t; E T,) 1\ (ti E Tt)}' 
(set of paths from root tasks to leaf tasks). 

The execution time of a partition will be the max­
imum execution time among all the paths of the task 
graph mapped to that partition. In Fig. 11, we show 
how the execution time for a partition is determined. 
The final mapping of tasks to partitions, with the la­
tency value for each task, is shown. In partition 1, 
three paths are mapped. The latency of this partition 
is the greatest latency along a path mapped to the par­
tition, i.e., maximum among 350 ns, 400 ns, ISO ns. 
The maximum latency in partition 2 is 300 ns. If the 
block-processing factor is k, then the execution time 
of the partition is the latency multiplied to the block­
processing factor. Formally the execution time of a 
temporal partition is given as 

p 
"Ip,1 .:s p .:s N, "I(t; ~ ti) E PI!!., 

: L L (Ytpm * D(m) * k) .:s dp (9) 
mEMt tEti~tj 

Design-Space Exploration 193 

_ 200ns 0 lOOns 

Temporal partition 1 O~ 200 ns ~ 
Delay = 400 ns 6YOO 

m ~ 0 50 ~ 
50 ns I 

I 

I I ----.-----.---
Temporal partition 2 ~ 300 ns 

Delay = 300 ns ~ 

Total delay = 400 + 300 + 2 *~ 

Figure ii. Execution time estimation. 

o 50ns 

+ o 150ns 

All temporal partitions I ... N used in the formula­
tion, may not be used in the final solution, if the tasks 
can fit in lesser number of partitions. To calculate the 
actual number of partitions used in the solution, we de­
termine the highest numbered partition used by any leaf 
level task in the task graph by the following equation: 

N 

"It E Tt: L L(p * Ytpm) .:s 1] (10) 
mEM, p=! 

Now the execution time constraint on the overall 
design can be stated in terms of Eqs. (9) and (l0) as 

N 

1] * CT + L dp .:s Da (11) 
p=! 

As discussed earlier, this constraint is used to search 
for a better solution as different partition bounds are 
being explored in Algorithm Refine_Partition_Bound 
in Fig. 9. 

Optimality Goal: The most optimal solution will be 
the design with the least execution time. 

N 

Minimize :1] * CT + L dp (12) 
p=! 

The solution of this ILP model gives us the opti­
mum temporal partitioning for the give partition bound 
N, the block-processing factor k, and the set of de­
sign points for the tasks. If the amount of intermediate 
memory required to process k computations exceeds 
the memory constraint Mmax of the architecture then 
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i~-;o~,----------------------------- ------_. 

. . 1 ______________________________________________ 1 

Task Structure 

T1={ *[9];+[15 };+[16]} 

T2 = { * [17]; + [ 23 ]; + [24] } 

Figure 12. Task graph for DCT. 

the user needs to reduce k and temporally partition the 
design again. 

6.3. Experimental Results for Optimal 
Search Algorithm 

We performed temporal partitIOning on the 4 x 4 
Discrete Cosine Transform (DCT) which is the most 
computationally intensive part of the JPEG [36] algo­
rithm. In this study, the DCT is a collection of 16 tasks 
as shown in the Fig. 12. On the left of the figure we 
show the internal structure of a task in the DCT. There 
are two kinds of tasks in the task graph, T 1 and T2, 
whose structure is similar but whose operations have 
different bit widths. Task T 1 represents two vector mul­
tiplications in the first dimension of the DCT. Task T2 
represents two vector multiplications in the second di­
mension of the DCT. We obtained all the design points 
for each kind of tasks by using estimation tools inte­
grated in the SPARCS design environment [15], on the 
individual tasks. The functional units, area and latency 
costs for each is shown in Table 1. 

In Tables 2-4 we present the results of our temporal 
partitioning tool. In all the tables, Rmax is the resource 
constraint of the FPGA, CT the reconfiguration time, 
k the block-processing factor, and N the number of 
partitions onto which the design is partitioned. The 
latency of the final design (with the reconfiguration 
overhead), is shown in the column Latency. The ex­
ecution time of the design for the k blocks of data is 
given in the column Design Execution Time. Design 
Execution Time/k shows the average execution time 
per computation, Mem. Overhead shows the amount 
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Table 1. Design points for DCT tasks. 

Characteristics 
Desgn. 

Task PI. Area (CLBs) Latency (ns) *9 +16 *16 +24 

Tl 336 375 8 4 

2 286 500 6 2 

3 220 625 4 2 

4 194 750 2 2 

5 174 875 2 

T2 396 420 8 4 

2 356 560 6 2 

3 292 700 4 2 

4 276 840 2 2 

of maximum memory stored in any of the temporal 
partitions (excluding the memory used to store the in­
put and outputs) of the solution in terms of the number 
of words of the hardware. T(s) is the time taken by 
our temporal partitioning tool to execute in seconds. 
All experiments were run using an ILP solver called 
CPLEX on an UltraSparc Machine running at 175 MHz 
with 120MB memory. 

In Table 2, we present the result of temporal parti­
tioning and design space exploration of the DCT with 
and without block-processing factors. In all experi­
ments the reconfiguration time considered is similar to 
the Xilinx 6200 series FPGAs. In Exp. 1, for a block­
processing factor of 3,000, our temporal partitioning 
tool explores 3 temporal partitions for the design and 
results in a latency of60,795 ns. In Exp. 2, with a block­
processing factor of 1 (i.e., no computations are being 
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Table 2. Results for combined design-space exploration and block-processing. 

Latency Design execution Design execution Mem. 
Exp. Rmax (CLBs) CT (j.ls) k N (ns) 

4,000 30 3,000 31,590 

2 60,795 

3 

2 4,000 30 31,590 

3 2,304 30 3,000 2 61,590 

3 91,215 

4 

4 2,304 30 2 61,590 

Table 3. Results for different reconfiguration overheads. 

Exp. Rmax (CLBs) CT k N Latency (ns) 

5 2,304 30 ns 300 2 1,650 

3 1,305 

6 2,304 30 ns 50 2 1,650 

3 1,305 

7 2,304 3 ms 3,000 2 6,001,590 

8 2,304 3 ms 30,000 2 6,001,590 

3 9,001,215 

Table 4. Results for design-space exploration. 

Exp. Rmax (CLBs) CT (j.ls) k N Latency (ns) 

9 2,304 30 3,000 2 61,715 

10 2,304 30 3,000 2 61,590 

3 91,215 

sequenced), the tool gives a minimum latency design 
of 31,590 ns and uses just one temporal partition. This 
results in a statically configured design. Even though, 
the latency ofthe statically configured design in Exp. 2 
is less than that of Exp. 1, this is not the best possible 
solution. This is because, if multiple computations 
are computed on both the static and RTR design, the 
RTR design will outperform the static design. For ex­
ecuting 3,000 computations, the RTR design will take 
2,445 fl,sec, while the static design will take 4,800 fl,sec. 
This is a 49% improvement of the RTR design over the 
static design. Exp. 3 and 4 were performed for different 
FPGA size of 2,304 CLBs, which is the size of a Xii in x 
XC4062. In Exp. 3, again with a block-processing fac­
tor of 3000, the optimal design takes 3 temporal par­
titions with the latency of the design being 91,215 ns. 

time time/k (ns) overhead T (s) 

4,800 j.lS 1,600 0 

2,445 j.lS 815 48,000 

Infeasible 

31,590 ns 31,590 0 

4,830 j.lS 1,610 48,000 II 

3,735 j.ls 1,245 48,000 22 

Infeasible 

61,590ns 61,590 16 57 

Design execution time (j.ls) Mem. overhead T (s) 

477.06 4,800 17 

364.59 4,800 19 

79.56 700 25 

60.84 700 7 

10,770 48,000 80 

53,700 480,000 29 

45,450 480,000 36 

Design execution time (j.ls) Mem. overhead T (s) 

5,145.6 48,000 

4,830 48,000 22 

3,735 48,000 204 

For Exp. 4, with no block-processing factor the optimal 
latency of the design is 61,590 ns. Again, the actual ex­
ecution time of the design when the block-processing 
factor is considered while exploring the design space 
is superior. In all the experiments the value of Mmax 
is 64 K. 

The experiments in Table 2 illustrate that combining 
block-processing and design space exploration gives 
better temporal partitioning solutions. If the block­
processing factor is not considered at the time of tem­
poral partitioning (i.e., is equal to 1), then the tempo­
ral partitioning tool will tend to pick the design with 
minimum number of temporal partitions. If a relevant 
block-processing factor is given the tool will search 
for a faster design with more temporal partitions, be­
cause block-processing will amortize the effects of 
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reconfiguration overhead. Since we understand that the 
block-processing is necessary for good performance of 
a temporally partitioned design, we must integrate this 
idea early in the design process, while partitioning and 
design point selection is being performed. 

Similar results will hold if the reconfiguration over­
heads are varied. In Table 3, we show results for dif­
ferent reconfiguration overheads. In Exp. 5 and 6, the 
reconfiguration overhead is in nano-seconds (similar 
to the reconfiguration overheads of context-switching 
FPGAs like the Time Multiplexed FPGA [37, 38]). 
In Exp. 7 and 8, the reconfiguration overhead is in 
milli-seconds (similar to commercially available re­
configurable hardware, the Wildforce board with Xil­
inx FPGAs [39]). As the reconfiguration overhead 
decreases we observe that for small values of k, the 
exploration process chooses more temporal partitions. 
However, for the reconfiguration overheads in milli­
seconds even for values of k as large as 3,000 the 
temporal partitioner chooses designs with minimum 
temporal partitions. So for an architecture which has 
a very high reconfiguration a large number of blocks 
must be processed to amortize the cost of the recon­
figuration overhead. Such is the case in Exp. 8 where 
for an overhead of 3 ms, 30,000 computations need to 
be sequenced to overcome the effect of the reconfigu­
ration overhead and for the tool to partition the design 
over 3 temporal partitions. From these experiments 
we see that given the block-processing factor and the 
architecture constraints the temporal partitioning tool 
will select the most appropriate design point and the 
placement of tasks on partitions. 

In Table 4, we illustrate how design space explo­
ration is beneficial. For same values of the block­
processing factor k, we perform experiment with and 
without design space exploration. In Exp. 9, temporal 
partitioning is performed with only one design point for 
each task, the minimal area design point. In Exp. 10, 
all the design points are used. Again we observe that 
the tool chooses the most appropriate design points 
for the given constraints, when multiple design points 
are given to it, and results in a 27% improvement of 
the design in Exp. 10. Therefore design space explo­
ration must be integrated with and performed during 
the temporal partitioning process, rather than choosing 
the design point before temporal partitioning is per­
formed. 

The optimal solution process described in this sec­
tion produced results in less run-times of the temporal 
partitioning tool when the size of the problem to be 
solved is not very large. For eg., a task graph of size 15 
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tasks, 3 temporal partitions and 3 design points per task 
solved quickly. But a task graph of 30 tasks, 6 temporal 
partitions and 3 design points per task took many hours 
to solve. 

7. Temporal Partitioning and Design Space 
Exploration by Iterative Search Algorithm 

To handle larger problem sizes, we have therefore de­
veloped a novel method of solving the ILP problem it­
eratively. With this method we break the large solution 
space and window in to smaller regions of the solution 
space progressively, to obtain near-optimal solutions 
for the problems. Instead of solving each ILP problem 
to global optimality we break the search space of the 
algorithm into smaller sections. An ILP problem for a 
section of the search space is formed and a constraint 
satisfying solution is generated. Success or failure of 
a search guides the algorithm to move iteratively into 
the next region of search while improving the solution. 
There can be many ways of dividing the search space 
into smaller sections. We have approached the problem 
by dividing the search space by a binary subdivision 
method. 

7.1. Preprocessing 

In this section, we discuss the additional preprocessing 
steps which need to be undertaken for the new algo­
rithm that iteratively explores different regions of the 
design space. The other preprocessing steps of Design 
Point Generation and Partition bounds Estimation are 
as discussed in Section 6. 

Execution Time Bounds Calculation: The execution 
time of the temporally partitioned design will involve 
two components-( 1) execution time due to the actual 
execution of the tasks in each temporal partition for the 
given block-processing factor k, (2) execution time due 
to the reconfiguration overhead. For a given number 
of temporal partitions, N, we can calculate the upper 
and lower bounds on the execution time of the design 
as follows: 

1. Maximum Execution Time: The worst case execu­
tion time D max , will occur when all tasks are serially 
executed. For upper bound calculation, we will use 
the design point with maximum execution time for 
each task. The execution time for each task multi­
plied to the block-processing factor will give us the 
execution time of the design without considering 
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the overhead of reconfiguration. This time added 
to the reconfiguration overhead will be the upper 
bound design execution time for N partitions. 

Dmax=LD(m)*k+N*CT (13) 
lET 

2. Minimum Execution Time: For obtaining the lower 
bound for N partitions, we consider for each task 
the fastest (minimum latency) design point. We ob­
tain the latency for all the paths in the task graph, by 
summing up the minimum latency of the tasks along 
each path. The maximum latency value over all such 
path latencies in the task graph gives us the lower 
bound on the latency. This latency value is mul­
tiplied by the block-processing factor to derive the 
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execution time lower bound without reconfiguration 
overhead. This execution time added to the re­
configuration overhead will be the lower bound 
on design execution time for N partitions. In the 
following equation, p is a path in the task graph. 

Dmin = max {latency of p with fastest design point 
p 

for each task in p} * k + N * C T (14) 

7.2. Algorithmfor Design Execution 
Time Reduction 

Fig. 13, describes the design execution time reduc­
tion algorithm. It is an iterative procedure that ob­
tains near-optimal execution time solutions for a given 
partition bound, N, and execution time bounds Dmax 

Algorithm Reduce..ExecutionTime{ N, Dmax , Dmin ) 
begin 

Da +- 0 
FormILPModelO 
if SolveILPModeLFeasibleO = Infeasible subject to Timeout 

return(Da) 
Da +- CalculateSolnDelayO 1* Achieved execution time of solution * / 
while (Dmax - Dmin 2: (5) and (Da - Dmin 2: (5) 

D~ax = Dmax 
j* Binary subdivision of achievable design execution time range * / 
Dmax = (Dmax + Dmin)/2 
while (Dmax 2: Da) 
j* we have already achieved execution time Da which is less than Dmax * / 

Dmax = (Dmax + Dmin )/2 
end while 
FormILPModelO 
if SolveILPModeLFeasibleO = Infeasible subject to Timeout 

j* increase lower bound to overcome infeasibility * / 
Dmin = Dmax 

Dmax = D~ax 
else 

Da +- CalculateSolnDelayO 
end if 

end while 
return{Da ) 

end Algorithm Reduce_ExecutionTime 

Figure J 3. Iterative procedure for reducing design execution time. 
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and Dmin . The procedure for obtaining appropriate 
partition bounds was explained in Section 6.1. It finds 
a constraint satisfying solution between Dmax and Dmin . 
Once a solution is obtained, the upper bound is reduced 
to (Dmax + Dmin )/2, and a new solution for these con­
straints is found. If a feasible solution is obtained, then 
the obtained execution time of the solution becomes the 
upper bound for a new search. If no feasible solution 
is obtained, then this execution time becomes the new 
lower bound. It continues this binary subdivision on 
the execution time bounds, till the difference between 
the upper and lower bounds becomes very small, or no 
more feasible solutions are found. The tolerable dif­
ference between the lower and upper execution time 
bounds for the design is a user defined parameter, 8, 
called the Design Execution Time Tolerance. Design 
Execution Time Tolerance defines how much of the 
design space can be left unexplored in one run of the 
algorithm. Ifthe tolerance is small, more iterations will 
be spent in obtaining a solution, thus increasing the run 
time. If a large run time is not acceptable then this tol­
erance can be increased. The optimality of the solution 
will be affected by the value of 8. If 8 is very large then 
the algorithm may miss some solution which is better 
than the one found. We have shown in the experiments 
the effect of changing the value of 8 on the search pro­
cess. In practice, we can set the execution time toler­
ance to a small percentage of the MaxExecutionTime 
of the task graph. 

We again use the temporal partitioning and design 
space exploration problem as modeled as an ILP (pre­
sented in Section 6.2.1), with some modifications dis­
cussed later. We do not use the ILP for finding opti­
mal solutions, but instead use it to obtain a feasible 
solution for a problem. That is, the optimization goal 
explained in Section 6.2.1 is removed and some new 
constraints are added. These constraints will be pre­
sented shortly. Our reduction procedure then makes 
the constraints tighter, reformulates the ILP and solves 
it for the new problem. For larger designs, therefore 
we have developed this directed search procedure, 
which reduces the search space for each run of the ILP 
solver, while still exploring the whole search space. 
This claim has been substantiated, by observing that 
for small designs the solution obtained by this proce­
dure and an ILP solved to optimality is the same, as dis­
cussed in Section 6.3. In the algorithm, the procedure 
FormlLPModelO forms the ILP model. The procedure 
SolveILPModel..FeasibleO then solves the model by a 
linear program solver and returns with the first feasible 
constraint satisfying solution. 
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7.3. Partition Space Exploration Algorithm 

The partition space exploration procedure for the it­
erative execution time search is shown in Fig. 14. It is 
similar to the partition exploration procedure discussed 
earlier in Section 6.2.1, the only difference being that 
the iterative search algorithm Reduce_ExecutionTime 
is called to explore different temporal partitioning so­
lutions for each partition bound rather than solving the 
problem to optimality. Informally, the algorithm con­
sists of the following steps: 

1. The starting partition bound is N = N~in. 
2. Obtain a constraint satisfying solution for partition 

bound, N, and execution time constraints Dmax and 
Dmin for this partition bound. 

3. Find lower execution time solutions by progres­
sively exploring different regions of the search 
space, by tightening the execution time constraints, 
for the current partition bound. If N = N~in + y, 
then stop. 

4. Increase the partition bound, N = N + 1, and go to 
step 2. 

7.4. Modifications to the ILP model 

The ILP model discussed in the Section 6.2.1 remains 
the same, with some small modifications. We have 
two execution time constraints instead of Eq. (11) in 
the model. These are described below. 

N 

T) * CT + Ldp ::s Dmax 
p=l 

N 

T) * CT + Ldp ~ Dmin 
p=l 

7.5. Experimental Results for the Iterative 
Constraint Satisfaction Algorithm 

(15) 

(16) 

Case Study of AR filter: We present a case study of 
the Auto Regressive (AR) lattice filter [40] that has 
applications in signal and speech processing applica­
tions. In this experiment we demonstrate the closeness 
of the solution obtained by the iterative constraint sat­
isfaction algorithm presented in this section and the op­
timal algorithm described in Section 6. The task graph 
for the specification consists of 6 tasks is shown in 
Fig. 15. Tasks A and B show the internal structures of 
the filter tasks. Tasks T1, T3, & T4 have a structure like 
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Algorithm Refine...PartitionJ3oundO 
begin 

N~in f- MaxAreaPartitionsO 
Nfnin f- MinAreaPartitionsO 

N f- Nfnin /* starting partition number * / 
Dmax f- MaxExecutionTime(N) 
Dmin f- MinExecutionTime(N) 
Da f- Reduce-ExecutionTime(N, Dma;c, Dmin) 

while Da = 0 /* Partition bound was infeasible * / 
N f- N + 1 /* next partition number * / 
Dmax f- MaxExecutionTime{N) 
Dmin f- MinExecutionTime(N) 
Da f- Reduce_ExecutionTime(N, Dmax , Dmin ) 

end while 

while N < N~in + 'Y 

N f- N + 1/* Relax N */ 
Dmin f- MinExecutionTime{N) 
if Dmin ;::: Da 

return(Da) /* This is the best solution * / 
else 
/* find a better solution by taking Da as upper bound * / 
D~ f- Reduce-ExecutionTime(N, Da, Dmin) 

if D~ -=I- 0 /* Feasible * / 
Da +- D~ 

end if 
end if 

while 
return(Da) 1* return with the last known best solution * / 

end Algorithm RefineYartition..Bound 

Figure 14. Partition refinement procedure. 
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Figure 15. Task graph for the AR filter. 

TI = { • [ 8 J; • [8]; • [8 J; • [8]; + [ 16]; + [ 16] } type TASK A 

T2 = {+ [17]; +[ 17 J J typeTASKB 

T3= I' [18 J:' [8 J;' [18];' [8]; +[ 26];+ [26]} type TASK A 

T4= [. [27 J:' [8 J:' [27];' [8]; +[ 35]; +[ 35]1 type TASK A 

T5 = [+ [36); + [36]) type TASK B 
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Table 5. Design points for the AR filter tasks. 

Characteristics 

M, Area Latency *8 +16 +17 *18 +26 *27 +35 +36 

T1 120 250 4 2 

2 104 375 2 2 

3 84 625 

T2 30 125 2 

T3 1 170 320 2 2 2 

2 118 480 1 

T4 222 400 2 2 2 

2 155 600 

T5 54 200 2 

Table 6. Temporal partitioning of the AR filter, Rmax = 196, C T = 30 /LS, Y = 0, li = 100 /LS, k = 3000. 

Result(Iterative) Result(Optimal) 

Design execution Design execution 
N Dmax (/Ls) Dmin (/Ls) time (/Ls) time (/Ls) Mem. overhead 

8,055 3,975 Inf. 3 

4 1 8,085 4,005 6,210 

2 6,045 4,005 5,355 

3 5,025 4,005 Inf. 

4 5,280 5,025 Inf. 

5 1 5,355 4,035 5,010 

2 4,650 4,035 

3 4,950 4,650 

Task A, but differ in the bit-widths of their operations. 
Tasks T2 and T5 are like Task B, but again differ in 
their bit-widths. The bit widths of each operation in 
each task is also shown in the figure. The design points 
are shown in Table 5. These design points were again 
estimated using an estimation tool integrated in [15]. 
Task Tl has three design points, tasks T3 & T4 have two 
design points each, and tasks T2 and T5 have one design 
point each. The result of the experimentation is shown 
in Table 6. N denotes the number of temporal par­
titions explored. The columns under Result(lterative) 
state the result of running the iterative algorithm. I is the 
iteration of the algorithm, Dmax and D min are the design 
execution time bounds for that iteration calculated by 
the algorithm. Da gives the design execution time of 
the solution. Result( Optimal) is the result achieved 
by solving the problem to optimality using the algo­
rithm described in Section 6. Mem. Overhead shows 
the amount of maximum memory stored in any of the 
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Inf. 

Inf. 

Inf. 

5,355 15,000 

5,Q10 18,000 

temporal partitions (excluding the memory used to 
store the input and outputs) of the solution in terms of 
the number of words of the hardware. We use CPLEX to 
solve the ILP problems both for constraint satisfaction 
and optimal solution. We see that the result of our algo­
rithm matches the optimal solution for this task graph. 
We have performed a lot of experiments on small task 
graphs and the solution for our iterative procedure and 
an optimally solved ILP has been the same. 

Case Study of DCT: For task graphs with larger num­
ber of tasks, the iterative constraint satisfaction ap­
proach is able to explore in reasonable time more 
solution space than solving the problem to optimal­
ity. To demonstrate this, we again undertook a case 
study of the 4 x 4 DCT, however this time the size of 
each task is smaller. In this study, DCT was modeled 
in the form of 32 vector products. The entire DCT is 
a collection of 32 tasks, where each task is a vector 
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[---------------------------------------------------------_.: 
, 

, 
, 

Vector Product "" 
(Task) "'" 

T1 = { * [9); + [15 ); + [16)1 T2 = { * [17]; + [23]; + [24J } 

Figure 16. Task graph for OCT. 8 of the 32 tasks are shown. 

product. A vector product is shown in Fig. 16. There 
are two kinds of tasks in the task graph, T 1 and T2, 
whose structure is similar to the vector product, but 
whose bit-widths differ. A collection of eight tasks, 
forms a row of the 4 x 4 output matrix, as shown in 
the figure. The entire task graph consists of four such 
collections of tasks. Each task had three design points. 
Area and latency of the tasks for these design points 
were carefully estimated using an estimation tool [15]. 
The functional units, area and latency for each is shown 
in Table 7. The result of the iterative refinement proce­
dure for minimizing the design execution time of the 
temporally partitioned DCT for various FPGA resource 
bound, Rmax , and reconfiguration overhead, CT , values 
is shown in Tables 8 through 11. For the current set 
of experiments, column N denotes the number of tem­
poral partitions, Dmax and Dmin denote the maximum 
and the minimum design execution time bounds for 
the model being solved in that iteration. The design ex­
ecution time of the solution produced is shown in the 

Table 7. Design points for OCT tasks. 

Characteristics 

Task D. Area Latency *9 +16 

T1 180 375 4 2 

2 138 500 2 2 

3 121 750 2 

T2 216 420 

2 188 560 

3 162 840 

*16 

4 

2 

2 

2 

2 

column Design Execution Time. Run times for the tem­
poral partitioning tool, in seconds, are shown for each 
iteration ofthe algorithm separately in the column T(s). 
The total run time of the temporal partitioning tool in 
minutes for each experiment is shown in column T(m). 
All experiments have been run on an UltraSparc 1 ma­
chine running at 175 Mhz with 120 MB memory. 

In the first experiment, shown in Table 8, Rmax = 576 
CLBS (XC4013 fpga) and CT is 30 f.LS and the block­
processing factor k = 3000. The minimum number of 
partitions estimated by MinAreaPartitionsO is 8 and by 
MaxAreaPartitionsO is 11. We are able to reduce the 
execution time of the circuit in steps by doing a binary 
division. Once the difference between the maximum 
and minimum execution time is less than (, = 1000 f.Ls, 
we stop. Then, the algorithm proceeds by searching 
the next partition bound by increasing N and repeats 
the iterative search procedure. We sometimes need to 
have a timeout, either if the problem is infeasible or a 
solution is too difficult to find. This timeout is shown 
in the results as Inf. For this set of experiments we 
kept the timeout to be 300 seconds to find each con­
straint satisfying solution. Notice that, while we are 
tightening the design execution time constraint in each 
iteration of the solution, we are in effect making the 
solver progressively look at different parts of the de­
sign space. Since Partition Relaxation, y = 1, we stop 
our search at N = 12. 

In the second experiment shown in Table 9, we 
present the temporal partitioning of the same design 
with no block-processing being performed i.e, k = 1. 
For this experiment, we have not shown the value of 
reconfiguration overhead N * CT in the table. We start 
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Table 8. DCT, Rmax = 576, 8 = 1000 /1S, Y = 1. k = 3000. 

Bounds Result 

CT (/1s) N I Dmax (/1s) Dmin (/1s) Design execution time (/1s) T (s) T (m) 

30 8 76,580 2,625 Inf. 300 

9 76,590 2,655 28,410 37.40 

2 21,138 2,655 20,640 77.32 

3 11,895 2,655 Inf. 300 

4 16,515 11,895 Inf. 300 

5 18,825 16,515 Inf. 300 

6 19,980 18,825 Inf. 300 

10 20,640 2,685 18,900 278.8 

2 11,631 2,685 Inf. 300 

3 16,104 11,631 Inf. 300 

4 18,342 16,104 Inf. 300 

5 18,621 18,342 Inf. 300 

11 18,900 2,715 Inf. 300 

12 18,900 2,745 Inf. 300 61.55 

Table 9. DCT, Rmax = 576, 8 = 1000 /1S, Y = 1, k = 1. 

Bounds (without N * CT) 

Dmax Dmin 

CT (ILS) N I (ns) (ns) 

30 8 25,440 795 

a=O 9 25,440 795 

2 6,956 795 

3 9,266 6,956 

4 8,111 6,956 

5 7,533 6,956 

6 7,244 6,956 

with 8 partitions, but no solution is possible. Then we 
relax the partition bound by 1, to 9 and continue the 
search for a solution. Notice that no relaxation of N 
was undertaken in this experiment, after a solution was 
achieved in 9 partitions. This is because, the algo­
rithm Refine_Partition_Bound calculates the new lower 
bound, Dmin , and finds that it is greater than the al­
ready achieved execution time, so it stops. Again, if 
we compare this result with the experiment where we 
had considered block-processing of designs, we see 
that the design in Table 8 will perform 3000 compu­
tations in 18,900 /L seconds while the current design 
will perform the computations in 22,410 /L seconds. 
So it is important to integrate both block-processing 
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Result 

Design execution time 
(without N * CT) (ILS) T (s) T (m) 

Inf. 300 

9,630 77.60 

Inf. 300 

9,100 78.95 

81,00 185.73 

7,380 281.93 

Inf. 300 25.4 

and design space exploration as part of the temporal 
partitioning process so that appropriate task mapping 
to partitions and design points is performed to produce 
designs that will give better performance. 

In Table 10, we show the results on DCT with 
Rmax = 1024 (XC4025 fpga). In this experiment the 
execution time tolerance 8 is 1000 /LS. To show how 
varying the parameter 8 affects the performance of the 
algorithm, we reduce 8 to 100 /LS and repeat the same 
experiment whose results are shown in Table 11. The 
number of iterations spent looking for a solution in­
creases, thus increasing the runtime. But a better so­
lution is achieved. We therefore observe that reduc­
ing execution time tolerance increases the run time but 
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Table 10. OCT, Rmax = 1024, 8 = 1000 I1S, Y = 1. k = 3000. 

Bounds Result 

CT (l1s) N Dmax (l1s) Dmin (l1s) Design execution time (l1s) T (s) T (m) 

30 5 76,410 2,535 18,240 20.92 

2 11,775 2,535 Inf. 300 

3 15,816 11,775 Inf. 300 

4 17,709 15,816 16,980 288.46 

6 1 16,980 2,565 11,760 76.43 

2 9,772 2,565 Inf. 300 

3 11,574 9,772 Inf. 300 

7 11,760 2,595 11,520 214.4 

2 7,146 2,595 Inf. 300 

3 9,483 7,146 Inf. 300 

8 11,520 2,625 Inf. 300 45.00 

Table 11. OCT, Rmax = 1024,8= IOOl1s, y = 1, k = 3000. 

Bounds 

CT (l1s) N I Dmax (l1s) Dmin (l1s) 

30 5 76,410 2,535 

2 11,775 2,535 

3 15,816 11,775 

4 17,709 15,816 

5 16,761 15,816 

6 15,934 15,816 

6 16,020 2,565 

2 9,772 2,565 

3 11,574 9,772 

4 10,359 11,574 

5 10,510 11,574 

7 10,560 2,595 

8 10,560 2,625 

achieves better solutions. For all the experiments shown 
in this section, we also experimented with obtaining 
optimal solutions as we have shown for the AR filter. 
However, in none of these experiments could the opti­
mal solution process get even a single feasible solution 
in the same run time as the iterative solution process. 
This is because in the iterative solution process we are 
dividing the solution space into smaller regions, thus 
reducing the size of the problem that the ILP solver has 
to solve in one run of execution. Also, we are directing 
the search process to look from higher design execution 

Result 

Design execution time (l1s) T(s) T(m) 

18,240 20.92 

Inf. 300 

Inf. 300 

16,980 288.46 

16,020 74.17 

Inf. 300 

11,760 76.43 

Inf. 300 

Inf. 300 

10,560 104.04 

Inf. 300 

Inf. 300 

Inf. 300 49.4 

time solutions towards lower design execution time so­
lutions and this directed search process seems to help 
the solver when solving problems with very large so­
lution spaces. 

We have applied this technique to various other ex­
amples like 2D-FFT and FIR filter, median filter. The 
results we noticed are similar and also since the their 
taskgraphs are very regular like DCT we have instead 
included results for random unstructured graphs in the 
next section. This shows the viability of the approach 
for both regular and non-regular graphs. 
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8. Comparison with List Based 
Scheduling Algorithm 

Following the two case studies we demonstrate the re­
sults of our techniques with another temporal partition­
ing algorithm based on the list scheduling technique. 
We will compare the results for the DCT example which 
is a very regular graph. To find how our algorithm works 
on unstructured graphs we also generated many random 
graphs. The characteristic feature in which they differ 
from DCT is that they are graphs with more number 
of tasks in their critical path i.e. they are long graphs. 
Also the various tasks are different in size and so vary 
in the number of design points. 

We now discuss briefly the the scheduling algorithm 
which is similar to some other temporal partitioning 
works in literature [7]. In other partitioning works tem­
poral partitioning is performed on an operation level 
data flow graph. Each operation in the data flow graph 
is placed in a priority list honoring the dependency 
among the operations. The priority list is formed by 
placing the nodes on the list one by one. A node is 
placed on the priority list if all its predecessors are al­
ready on the priority list. Then the algorithm assigns 
nodes starting from highest to the lowest priority in 
a partition until the area is filled. Once a partition is 
filled nodes are assigned to the next temporal partition. 
Each operation has one area and delay value associated 
with it. We will extend the same list based scheduling 
technique to work on task graphs instead of operation 
graphs. However there is no easy way to incorporate 

multiple design points in this technique. Therefore, go­
ing by the philosophy of this approach where the aim is 
to minimize the number of partitions in the design we 
choose the least area design point for each task prior to 
the start of the list based scheduling algorithm. 

Table 12 presents the result of our comparison for the 
DCT and the random graphs. We have shown the de­
sign execution times for our iterative search algorithm 
and the list based scheduling algorithm. The results are 
presented for each partition bound for which a solution 
is generated by the algorithms. Since the reconfigura­
tion overheads for both the algorithms is the same we 
show the design execution times without the reconfig­
uration overheads. 

Graph Random 1 consists of20 nodes, Random 2 has 
30 nodes. Both the graphs have upto 4 design points per 
task. We have presented results for different area con­
straints and block-processing factors. The set of results 
on the DCT example and the random graphs demon­
strate the improvement in performance of our algorithm 
over the list based scheduling method. The results are 
for varying block-processing factors. In each of the 
results the performance of our algorithm is superior by 
7-40%. This demonstrates the following two signifi­
cant points: 

• Design space exploration without block-processing 
is meaningful because the exploration process will 
choose the most appropriate design points for the 
given constraints. The first line in Table 12 with 
no block processing demonstrates a performance 

Table 12. Comparison with list based scheduling algorithm. 

Exp. Rmax (CLBs) CT (Its) k N 

DCT 1024 30 5 

3,000 5 

3,000 6 

3,000 7 

Random I 1024 30 4 

3,000 4 

Random 2 1024 30 8 

3,000 8 

Random 2 2034 30 2 

3,000 2 

3 
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Design execution time 

List based 

7,200 ns 

21,450 itS 

9,000 ns 

27,000 itS 

13,500 ns 

40,260 itS 

6,450 ns 

19,350 Its 

Iterative 

4,610 ns 

16,680 itS 

11,400 Its 

11,110 itS 

5,100 ns 

14,850 Its 

10,950 ns 

27,450 Its 

4,290 ns 

13,500 itS 

12,600 ItS 

% Improv 

35.97 

22.23 

46.85 

48.20 

43.3 

45 

18.88 

31.8 

33.48 

30.23 

34.88 
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improvement of 35% over the results from an al­
gorithm that chooses the design points prior to the 
temporal partitioning step. 

• Design space exploration with block processing 
demonstrates that the amortization of the reconfigu­
ration overhead due to block processing will help in 
the usage of more temporal partitions. For DCT the 
result demonstrates an up to 47% improvement over 
the list based algorithm that does not consider block 
processing. 

9. Extensions and Limitations of the Work 

All our methodology is still applicable in case of 
inter-loop dependencies by simply setting the block 
processing factor to '1' (i.e., no block processing). 
However, in the presence of inter-loop dependencies 
(i.e., absence of block processing) temporal partition­
ing is generally not time-effective for the devices like 
XC4000 that have high reconfiguration time. However, 
for devices such as XC6200 and the context switch­
ing FPGAs, where reconfiguration time is relatively 
low, temporal partitioning remains viable and useful. 
In either case our formulation will produce an opti­
mal or near-optimal temporal partitioning solution af­
ter performing design space exploration and choosing 
the most appropriate design point for each task. (This 
solution may have only one temporal segment for ar­
chitectures with high reconfiguration overheads.) We 
now present some of the extensions of our work and 
the limitations of the current technique. 

9.1. Intermediate Data Transfer Time 

In the design process model in Section 5, we have as­
sumed that a suitable high level synthesis system exists 
that can schedule memory accesses together with the 
operations in the task graph if there is enough slack 
available. However if such a synthesis system is not 
available and the memory accesses have to be per­
formed prior to the execution of the task graph we need 
to account for the memory read write access times in 
our model. In the model presented earlier we have not 
integrated the calculation of read and write times for 
intermediate data in the calculation of the delay of each 
temporal partition. However, our model is very exten­
sible in this respect. Since we are already calculating 
the amount of data transfer taking place across each 
temporal partition, the current model can be extended 
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by modifying the minimization goal of the ILP model 
to include the intermediate memory read-write times. 
To do this we extend the minimization goal to also 
include 

Amount of data transfer 

* (Memory read time + Memory write time). 

We can exclude the memory read by the input tasks 
and memory written to by the output tasks from the 
minimization goal as this factor is a constant of the 
graph and cannot be reduced. 

In terms of the equations presented in Section 6.2.1, 
we already have a variable W Ptl t2 defined that is rep­
resentative of whether data is being transferred across 
temporal partition p due to tasks t] and t2. To cal­
culate the read and write times for the intermediate 
data we only need to know, if a data transfer is taking 
place but are not concerned about the partition bound­
aries it is taking place. Therefore, we can generate a 
new variable itlt2 that represents the data transfer due to 
tasks t1 and t2 without considering the partition where 
this transfer takes place. This can be done in terms of 
the WPtlt2 variables already generated. Formally, we 
generate the variable i tlt2 below. 

if task tl and t2 are not placed in the 
same temporal partition 

otherwise (17) 

Then the time required for the data transfer of inter­
mediate data is equal to 

where, Dmem is the sum of the read and write time for 
one memory element of the reconfigurable processor. 

Now the minimization goal for the new problem will 
be 

N 

Minimize TJ * CT + L dp 

p=1 

+ itlt2 * B(tl, t2) * k * Dmem (18) 

To extend the technique presented in Section 7 we 
need to include the intermediate data read and write 
time in the generation of the delay bounds Dmax and 
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Dmin used in that algorithm. In the preprocessing step 
where we generate Dmax and Dmin we can also generate 
upper and lower bounds on the amount of data transfer 
that can take place for the given task graph. The upper 
bound on the intermediate data transfer is given by the 
sum of all data transfers that can ever take place in 
the task graph. This is available by summing all data 
transfers across all edges in the task graph. This value 
multiplied by Dmem is the upper bound on the time to 
transfer the intermediate data for the task graph. The 
upper bound on execution delay of design (as calculated 
in Section 7) + upper bound on the intermediate data 
transfer time will be the new Dmax. The lower bound 
for the data transfer is 0, so D min will remain the same 
as calculated in Section 7. 

With the above extension, the intermediate data 
transfer time will be incorporated in the algorithm. The 
effect on the solution will be twofold. If the memory 
read/write time for tasks is very small compared to the 
execution times of the tasks then results similar to our 
experimental results will still be generated. However, if 
the memory read/write times are of comparable magni­
tude, then we will see solutions that have a tendency to 
avoid cutting across intertask edges. All the intermedi­
ate data-transfer time in Eq. (18) is added to the design 
execution time. However, in practice, part of this cost 
can be reduced in the following ways: 

• It is not necessary to have a design where all the 
intermediate data is read and written completely 

-----------------~ 
READ MEMORY 

REGISTERS 

DATAPATH 

READ 
CONTROLLER 

DATAPATH 
CON1"ROLLER 

WRITE MEMORY 
REGISTERS 

(a) 

WRITE 
CONTROLLER 

Figure 17. Reduction of time for memory access. 
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excluded to the execution of the design. Much of this 
read/write can be performed in parallel to the execu­
tion of the rest of the design. We can also develop 
an estimation process that calculates the overhead of 
intermediate data transfer for each design point, if 
such a transfer were to take place because of a task 
being placed in the next temporal partition. This can 
be incorporated in our model and accurate execution 
time results will be generated. This estimation pro­
cess and model is currently being investigated. 

• Or, if the read and write have to be performed in 
serial to the design execution, we have developed a 
model that will reduce the time to access memory 
by generating two separate clocks-one for mem­
ory access and one for design execution. Figure 17 
presents an overview of this approach. If a single 
clocking scheme is used for the FPGA the clock 
width is limited by the maximum combinational 
delay among all the functional units in the design. 
Usually the memory access can take place at a much 
faster rate than the clock frequency dictated by the 
design. Therefore we have split the memory access 
and the design execution so that memory access 
can occur at a faster rate. The time to program the 
clock from the host is usually negligible as it in­
volves writing a single word to the reconfigurable 
processor. 

We can extend Eq. (18) by multiplying the data-transfer 
time with a constant 'reduction factor' between 0 and I 

Program clock 
for write controller 

(b) 

Configuration done 

Program clock for 
dalapath controller 
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Table 13. Results for variation of the factor reducing memory 
access time. 

Rmax Reduction Design execution 
Exp. (CLBs) factor N time (/1s) 

DCT 2304 0 2 4,830 

Dmem = 140ns 3 3,735 

.2 2 5,408 

3 5,063 

.4 2 6,885 

3 6,423 

.6 2 7,860 

AR filter 196 0 4 5,355 

Dmem = 140 ns 5 5,010 

.2 4 5,940 

5 5,845 

.4 4 6,531 

that can be used to appropriately scale down the mem­
ory access time by the average amount that it is be­
ing reduced by using one of the techniques discussed 
above. If the factor is 0 then all the memory access 
costs have been absorbed. If the factor is I then none 
of the costs have been absorbed. We now present a 
few experimental results in Table 13 for different val­
ues of this reduction factor for the DCT and AR fil­
ter examples. For all the experiments CT = 30 fJS and 
k = 3,0004. We see from the tables that for the DCT 
temporal partitioning will be explored till the reduc­
tion factor is .4. For the reduction factor at .6 the the 
design with minimum number of partitions is the best 
solution. For AR filter the reduction factor of 2:.4 stops 
the exploration process. 

9.2. Intermediate Data Overhead 

Intuitively we can understand that due to block pro­
cessing the amount of memory required for saving the 
intermediate data will be k times the amount of memory 
required for a temporally partitioned solution that does 
no block processing. This would happen if a solution 
generated for k = 1 (no block processing) is used to 
process blocks of data. However, it is not necessary that 
the solution generated by our algorithm for both block 
processing and non block processing in a design will 
gave same results. Formally, we can state the overhead 
of intermediate memory needed for block processing 
in each temporal partition in terms of the variables of 
the ILP model. The total amount of memory overhead 

Design-Space Exploration 207 

in each partition is given by 

L L L Ytpzm * B(env, t) * k 
tET p<eP2<eN mEM, 

+LL LYtP3m*B(t,env)*k 
tET !<ep)"opmEM, 

+ L L (Wptlt2 * B(t!, t2) * k) 
t2ETtl~t2 

The maximum of these values for all partitions would 
determine the size of the external RAM required for the 
system. 

If we run two versions of a specification through 
our system, with and without block processing, we can 
determine the overhead due to block processing. As a 
byproduct of our model we can thus calculate precisely 
the memory overhead due to block processing in each 
design. 

9.3. Limitations 

As we have discussed earlier in Section 8, our tech­
niques demonstrate that design space exploration with 
block processing is beneficial in amortizing the cost of 
the reconfiguration overhead. However, if data is to 
be processed in real time where blocks of data are not 
available a priori, our method can still be used to search 
for a temporally partitioned solution if one is possi­
ble within the inter block-arrival time constraint. It is 
possible for our system to take the inter block-arrival 
time constraint on the overall execution time rather than 
have one generated by the tool. If a static/temporally­
partitioned solution is possible it will be generated by 
our tool. However, if the designer cannot specify an 
inter block-arrival time or if this time varies for various 
inputs and cannot be know a priori then our methods 
cannot be applied. 

The current implementation does not support 
pipelining of the different computations in the same 
temporal partition. This would be particularly benefi­
cial as it would reduce the execution time for the de­
signs. Another limitation of the approach is that even 
though tasks can be of arbitrary granularity, splitting 
of tasks across temporal partitions is not allowed. Cur­
rently the memory read/written in a temporal partition 
remains alive for the life of a temporal partition. More 
detailed memory access models would require sophis­
ticated foot-print analysis of the memory-bound data 
structures and is beyond the scope of the current work. 
The partial RTR capabilities of the reconfigurable 
device is also not exploited from within the algorithm. 
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10. Conclusion 

We presented an automated temporal partitioning 
methodology, which demonstrates how integrating 
design space exploration and block-processing pro­
cedures, can lead to performance enhancements in 
dynamically reconfigured designs even when the 
reconfiguration overhead is a dominating factor in 
the computation time. We have shown, that by using 
mathematical programming techniques we can model 
the task level temporal partitioning and design explo­
ration problem incorporating multiple constraints of 
area, design execution time, and memory. We have also 
developed a framework in which these techniques can 
be used in a novel manner to solve constraint satis­
faction problems for large specifications of real world 
examples such as the DCT. We are able to get near­
optimal solutions in short run times with this iterative 
procedure. The effectiveness of the formulations and it­
erative procedure was demonstrated by the case study 
of the DCT. 

This technique can handle tasks of arbitrary gran­
ularity, so the same technique can be used to handle 
task graphs with task sizes varying from small to very 
large. It is also possible to address sharing of resources 
in a temporal partition though the problem size and 
complexity will be increased as more variables will be 
added to the ILP model to model sharing of resources. 

The algorithms presented here have been imple­
mented within the temporal partitioning module of the 
SPARCS [15] integrated design environment. 
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Abstract. Reconfiguration enables the adaption of Coordinate Rotation DIgital Computer (CORDIC) units to 
the specific needs of sets of applications, hence creating application specific CORDIC-style implementations. 
Reconfiguration can be implemented at a high level, taking the entire CORDIC unit as a basic cell (CORDIC-cells) 
implemented in VLSI, or at a low level such as Field-Programmable Gate Arrays (FPGAs). We suggest a design 
methodology and analyze arealtime results for coarse (VLSI) and fine-grain (FPGA) reconfigurable CORDIC units. 
For FPGAs we implement CORDIC units in Verilog HDL and our object-oriented design environment, PAM-Blox. 
For CORDIC-cells, multiple reconfigurable CORDIC modules are synthesized with state-of-the-art CAD tools. At 
the algorithm level we present a case study combining multiple CORDICs based on a geometrical interpretation 
of a normalized ladder algorithm for adaptive filtering to reduce latency and area of a fully pipelined CORDIC 
implementation. Ultimately, the goal is to create automatic tools to map applications directly to reconfigurable 
high-level arithmetic units such as CORDICs. 

I. Introduction 

Reconfigurable computing spans the space between 
programmable microprocessors and static Application 
Specific Integrated Circuits (ASICs). Reconfigurable 
architectures offer the flexibility of ASIC design and 
the programmability of microprocessors. The over­
head of reconfigurability depends on the complexity 
of the reconfigurable cell. Bit-level cells in Field­
Programmable Gate Arrays (FPGAs) offer high flexi­
bility with a high overhead in latency and area. ASICs 
with programmable arithmetic units, "chunky archi­
tectures" [1], in our case Coordinate Rotation DIgi­
tal Computer (CORDIC)-cells, have a lower overhead 
with much less flexibility. In this research we are not 
going to end the debate about which level of recon­
figurability is best. Instead, we show how CORDIC 
arithmetic units can be implemented on FPGAs and 
on ASICs. Given multiple CORDIC arithmetic units, 
we show a case study on how applications could be 
mapped onto a set of CORDIC arithmetic units by us­
ing a geometric interpretation of computation. 

CORDIC arithmetic units use shift-and-add primi­
tives to compute fixed-point elementary functions on 
relatively small silicon area. For a more detailed intro­
duction to CORDIC algorithms see [2]. For advanced 
CORDIC techniques see for example [3,4]. CORDIC 
units are known to be highly pipelineable, very small, 
with linear convergence towards the correct result. Lin­
ear convergence means that we can guarantee at least 
one bit of precision per shift-add iteration. The internal 
structure of CORDICs, consisting of adders and wired 
shifts in the case of parallel CORDICs, makes them 
well suited for FPGA implementation [5]. 

CORDIC functional units compute up to two ele­
mentary functions at the same time. Given three argu­
ments x, y, z, basic CORDIC arithmetic units compute 
function pairs such as shown in Table 1. 

The fundamental principles behind the CORDIC al­
gorithms of VoIder [6] and Walther [7] can be found 
in their scalar form in the work of Chen [8]. Ahmed 
showed in [4] how scale factor compensation can be 
avoided by choosing an appropriate shift-sequence 
to automatically compensate for the scale factor. A 
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Table 1. Functions computed by CORDIe. 

x . cos(z) - y . sin(z) y . cos(z) + x . sin(z) 

x y+x·z 

x . cosh(z) + y . sinh(z) y . cosh(z) + x . sinh(z) 

x z+(y/x) 

refinement of this idea, in order to minimize overhead, 
was presented in [9]. All CORDIC implementations in 
this paper are therefore correctly scaled with minimal 
overhead. 

Ahmed also showed in [4] that if Chen's conver­
gence computation technique is applied to complex 
numbers instead of real numbers (as assumed by Chen) 
one obtains the class of CORDIC algorithms. The 
method of formally "replacing" real by complex num­
bers was extended in [3, 10] to obtain CORDIC algo­
rithms for quaternions and pseudo-quaternions. When 
the CORDIC functions, especially the higher order 
functions, are matched to applications-a system de­
sign issue-the real power of CORDICs and related 
algorithms can be exploited. 

One alternative to CORDICs are multiplication 
based algorithms. The major drawback of fast mul­
tipliers is their large size and irregularity of wiring for 
a logarithmic reduction of terms [11]. CORDICs com­
pute two elementary functions on approximately the 
area and latency of 1-2 multipliers. 

Reconfiguration of CORDICs enables effective 
hardware support of such complex functions, similar 
to micro-code or firmware (library functions). It be­
comes possible to hide the complexity involved from 
a typical application-level programmer. Custom de­
sign of CORDIC units for individual applications is a 
complex task, requiring both specialized low-level de­
sign tools and symbolic computing tools that support 
a domain expert. Sophisticated tools that can support a 
typical programmer will eventually become available. 
In the mean-time domain experts will have to use to­
day's tools to create winning designs using these ideas 
in advanced applications. 

As a first step towards an automatic CORDIC com­
piler for FPGAs, we introduce the hardware object as 
an intermediate level of abstraction [12]. We define a 
set of CORDIC module generators that could be tar­
geted by a compiler similar to the instruction set of 
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a microprocessor. Most of todays efforts at direct 
compilation from a high-level language to FPGAs tar­
get very simple arithmetic units such as adders, multi­
pliers, shifters, etc. Generally, by targeting such simple 
modules, most of the power of reconfigurable comput­
ing is lost. Instead, more complex arithmetic units such 
as CORDICs coupled with various alternatives of num­
ber representations should be targeted by higher-level 
compilers to exploit the full potential of reconfigurable 
computing. We are at the beginning of the develop­
ment process of special purpose compilers for complex 
arithmetic units such as CORDICs. One objective of 
this paper is to show a possible direction for high-level 
compilation to CORDICs. 

Section 2 describes the methodology of this research. 
Section 3 presents the results at the module level for 
a "chunky" CORDIC architecture, and CORDICs on 
FPGAs. Section 4 presents a case study at the algorithm 
level: mapping an adaptive ladder filter to fixed-point 
CORDIC arithmetic units. 

II. Methodology 

Ultimately, the goal is to create automatic algorithms to 
map applications directly to reconfigurable high-level 
arithmetic units. As a starting point we split the prob­
lem into 2 parts: 

• module-generation level (Section III): on this level 
we create building blocks based on CORDIC arith­
metic units. Module generation implies that we can 
create application-specific CORDIC units given pa­
rameters such as data bit-width, precision, or num­
ber of stages. We consider two options at the module 
level: 

1. fine-grain reconfiguration: CORDICs on FPGAs 
2. coarse-grain reconfiguration: VLSI CORDIC­

cells 

• algorithm level (Section IV): we use the CORDIC 
modules generated at the lower level, and combine 
them to compute entire applications. 

Module-generation is well understood, based on past 
research on CORDIC arithmetic units. We implement 
CORDICs for FPGAs with our module-generation en­
vironment, PAM-Blox, described in the next section, 
and Synopsys FPGA Express. Coarse-grain CORDIC 
cells are synthesized with Synopsys Behavioral Com­
piler. 
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The algorithm level poses similar challenges as com­
pilation to a very complex instruction set. The process 
of combining complex building blocks to optimally 
compute a specific algorithm is still not very well un­
derstood. We propose a geometrical interpretation of 
computation to create a unified approach for combining 
multiple CORDICs given a specific algorithm. 

III. Module Level 

At the module level, our task is to map a CORDIC ar­
chitecture to gates or look-up tables. In this section, 
we look at two approaches. The first approach is a 
fine-grain reconfiguration on FPGAs. The CORDIC 
modules are implemented using the PAM-Blox envi­
ronment or commercial synthesis tools for FPGAs. 
The second approach is a coarse-grain reconfigura­
tion in which the CORDIC module itself represents 
the basic reconfigurable cell implemented on an ASIC. 
Synthesis tools map CORDICs efficiently to hard­
ware. By changing the constraints on the latency of 
the design, different implementations of the cell can be 
explored. 

We implement fully parallel CORDIC modules. 
Figure 1 shows the parallel architecture of a generic 
CORDIC unit. 

, ........... 0-. . 

o 
"; . 

add/sub 

~.< ...... >. .. [}-
constant add 

Parallel CORDIC 

Figure 1. The figure shows a block diagram of a parallel CORDIC 
architecture. The table for the z-pipe is coded implicitly in the con­
stant adders. All adders include a wired shift of the operands. The 
shift amount is chosen to eliminate the scaling factor. For a bit-serial 
CORDIC simply replace parallel adders with bit-serial adders, add 
delay elements and a table for z-values. 

A. Fine-Grain Reconfiguration: FPGAs 

We compare the implementation of CORDICs with 
PAM-Blox and a state-of-the-art synthesis tool for 
FPGAs. 

A.I. PAM-Blox: Object-Oriented Module Generation. 
Traditional hardware synthesis is based on a top-down 
approach; starting from a high-level description, CAD 
tools synthesize and optimize the hardware level by 
level, until the final layout. Initial FPGA synthesis 
tools have taken the same approach, adding a last 
step of technology mapping at the end of the CAD 
hierarchy. 

We propose a bottom-up approach to the design of 
synthesis tools/compilers for FPGAs. The main rea­
son behind building FPGA circuits bottom up, is that 
the architecture and interconnect is limited to the re­
sources on the FPGA, making the traditional top-down 
approach less optimal. 

By creating a parameterizable repository of module 
generators, PAM-Blox [12], we add a level of abstrac­
tion that preserves optimal area and performance while 
simplifying the design process (compared to state-of­
the-art high-performance FPGA tools). In terms of re­
configurable computing, these modules constitute the 
instruction set that could be targeted by the compiler. 

Figure 2 shows an overview of the PAM-Blox sys­
tem. We use PAM-Blox as the name for the entire 
design environment. PamBlox (see Fig. 2) stands for 
templates of hardware objects while the more complex 

PAM-Blox 

Applications 

~ 1~~:;~e~~RDICS' PamBlox : 
I Counter, Adder, etc. ~ I 

PamOc : 
Registers,Logic Equations,Rom,Ram, etc. 

y y y 

Xilinx Netllst Format - XNF 

Figure 2. Layers of the PAM-Blox design environment: DIGITAL 
PamDC compiles the design to the Xilinx Netlist Format XNF; 
Pam-Blox are interacting with PamDC objects, PaModules interact 
with PamBlox and PamDC, and the application can access features 
from all three layers below. 
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PaModules are objects with a fixed size. PAM-Blox 
simplifies the design of datapaths for FPGAs by im­
plementing an object-oriented hierarchy described in 
C++. With PAM-Blox, hardware designers can benefit 
from some of the advantages of object-oriented system 
design that the software industry has learned to cher­
ish during the last decade. Efficient use of function 
overloading, virtual functions, and templates makes 
PAM-Blox a competitive and yet simple to use design 
environment. 

A major question is which modules are required. 
This question is actually similar to defining a hardware­
software interface for hardware-software co-design. 
We believe that by providing higher-level modules such 
as specialized multipliers (see [13] for IDEA encryp­
tion), state-machines (see [14] for boolean satisfiabil­
ity), arithmetic units for advanced number representa­
tions, etc., we can explore the benefits of reconfigurable 
arithmetic. In this study, we implement CORDICs and 
study how higher-level compilers might target such 
modules. 

Currently, the PAM-Blox CORDICs are imple­
mented as PaModules with a fixed bitwidth. A ftoor­
plan for a parallel CORDIC is shown in Fig. 3. The 8-bit 
parallel CORDIC requires 131 CLBs while a bit-serial 
CORDIC, with 23 bit-serial adders requires substan­
tially more area, due to the inherent dependency struc­
ture of the CORDIC algorithm. In contrast, a CORDIC 
iterating with only 3 parallel ADD/SUB modules on the 
CORDIC equations would have very low throughput, 
and an area penalty for the z look-up table which is 
hardwired in the parallel case. 

Although serial arithmetic usually takes less area, 
the bit-serial CORDIC occupies 30% more area than 
the parallel CORDIe. This counter-intuitive result is 
due to dependencies between the stages. A stage needs 

~e Ie 
,.ja 

"" ioc ioc 

Ii Ir, 
\I 

X Y Z 

Figure 3. Layout of the PP-CORDIC, placed with PAM-Blox. 

88 

Table 2. The table shows area and cycle time for PAM­
Blox and synopsys FPGA Express II (FE-II) for Xilinx 
XC4000 FPGAs at 0.5 /1. technology (speedgrade-3), after 
Xilinx place-and-route. The area of the parallel CORDIC 
(PP-CORDIC) is given in configurable logic blocks, CLBs 
(cells). 

CORDIC on FPGAs 

PP-CORDIC 

FE-II 
PAM-Blox 

Cycle time 

25.4 ns 

23 .7 ns 

Area 

133 CLBs 

l31 CLBs 

to know the sign of z of the previous stage in order to 
select the sign for its own computation. The resulting 
overhead of storing the intermediate values while wait­
ing for the sign to compute and the increased overhead 
for control logic, making the bit-serial CORDIC a less 
desirable CORDIC solution. 

The parallel CORDIC achieves a throughput of 33 
million rotations per second at 33 MHz PCI clock 
speed. The results are summarized in Table 2. With 
current FPGA technology the throughput would scale 
up easily to 100 MHz, hence 100 million rotations per 
second. 

A.2. Synthesis for FPGA. We compare PAM-Blox 
module-generation to Synopsys FPGA Express syn­
thesis. We try to optimize a CORDIC architecture for 
Xilinx XC4000 FPGAs using Synopsys FPGA Express 
[IS]. The results after optimization are comparable to 
the PAM-Blox results found in the previous section: 
after place&route the area of the circuit is 133 CLBs 
with a clock cycle latency of 25.4 ns. 

As we will see in the next section, synthesis tools 
can be used to effectively optimize CORDIC modules 
for ASICs. However, for FPGAs, the possible opti­
mizations are restricted by the internal architecture of 
the CLBs-especially the fast carry-chains. The ad­
vantage of FPGA synthesis over PAM-Blox, a struc­
tural bottom-up approach, for complex arithmetic units 
is therefore limited. As a consequence at the mod­
ule level it is preferable to use module generation to 
create CORDIC units for FPGAs, and a compiler to 
optimize the application-level structure using recon­
figurable CORDICs as elementary building blocks. 

B. Coarse-grain Reconfiguration: ASICs 

In this section we analyze how much a CORDIC unit 
can be optimized by state-of-the-art VLSI synthesis. 
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For the implementation of a CORDIC arithmetic unit 
in hardware, many of the operators (adders, subtracters) 
can be optimized. In particular, optimization can be 
performed when one of the operands is a constant (cal­
culation of the z factors) or when some input bits have 
the same value (calculation of the x and y factors after 
shifting). We apply logic and architectural optimization 
for a non-pipe1ined version of the parallel CORDIC and 
synthesize the design for ASIC. 

In general, the behavior of circuits can be represented 
by abstract models such as boolean functions and finite 
state machines which can be derived from higher-level 
models. In the case of combinational logic (i.e. cir­
cuits without feed-back), the abstract model is a set of 
boolean functions and relations on the circuit's inputs 
and outputs. These functions can be simplified for a 
given target architecture by employing logic synthesis 
and optimization [16]. Very powerful optimization can 
be performed under both area and/or time constraints. 

For arithmetic operations, further optimization can 
also be performed at the architectural level by looking 
at different architectures of operators (e.g. ripple carry 
adder, carry save adder, etc.), trying to increase bit-level 
parallelism. In the past few years, such techniques have 
also been integrated within commercial tools [17] and 
allow quick estimation of the performance of many 
candidate architectures. 

For ASIC synthesis we use the Synopsys Design 
Compiler to synthesize the circuit and the Synopsys 
Behavioral Compiler for the arithmetic optimization 
[17]. The target technology is the 'tsms 0.35 micron' 
logic process. We study the area/latency trade-off by 
changing the constraints on the optimizations. Figure 4 
presents the area-time curves with and without archi­
tectural and logic optimizations. We observe that after 
optimization the circuit is at least 20% smaller for a 
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Figure 4. Area-time curves for synthesized CORDICs. 

given latency and at least 17% faster for a given area. 
The smallest design (with optimization) has a total area 
of 57 K library units and a latency of 41 ns, compared to 
an area of75 K library units and a latency of 43 ns with­
out optimization. Minimal latency with optimization 
is 17.94 ns for an area of 153 K library units. Without 
optimization the latency is 23.45 ns for the same area 
as the optimized design. 

To increase the throughput for a given latency, we 
pipeline the implementation by inserting registers into 
the datapath. This can be done automaticaIIy by the 
synthesis tool. For any given clock frequency, an 
area/latency trade-off similar to Fig. 4 can also be iden­
tified with pipelined modules. 

IV. Algorithm Level: Combining 
Multiple CORDICs 

Combining multiple CORDICs to an entire applica­
tion is currently more an art than a science. In order to 
iIIustrate some of the reasoning and manipulations in­
volved when deriving CORDIC-style implementations 
for specific applications, we revisit an algorithm of Lee 
and Mort, summed up in [10] and detailed in Section 7 
of the survey [18). 

A. Adaptive Ladder Filter 

There are many ways of developing adaptive ladder 
filters. A very typical case is represented by the re­
cursive exact least-squares filters, such as discussed in 
[19, 20). One of the most efficient implementations is 
based on adaptive ladder or lattice filters. The adap­
tive ladder filter is an FIR filter used for the prediction 
of stochastic processes, e.g. for channel equalization 
or speech encoding. The following development is the 
scalar version corresponding to a single channel fil­
ter. The corresponding multi-channel version could be 
derived from [21]. The filter is composed of n cas­
caded feed-forward stages, n being the order of the 
filter. Each stage has two outputs, the so-called for­
ward and backward innovation, which are sent on to 
the next stage (the backward innovation being delayed 
by one sample period before being used). Each stage 
is parameterized by a "gain", the partial correlation be­
tween the forward and backward innovation. This gain 
varies with time and is updated whenever new values 
of the innovations are computed, i.e. each time there 
is a new sample; this is the "adaptive" part of the filter. 
Within each stage a time update consists of 3 equations 
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(the stage and time indices are not shown here) 

{

P+ = pvij + vr] 

v+ = (v - p+r])/(~+~) 

r]+ = (r] - p+v)/(p+v) 

(1) 

where p denotes the normalized partial correlations, 
v and r] denote the normalized forward and backward 
innovations respectively, p+, v+ and r]+ are the updated 
variables, and i = ~, the complement of x. 

Usually adaptive filter implementations with Given's 
rotations require floating point arithmetic. The selected 
filter algorithm (equations above) has a built-in vari­
ance and magnitude-normalization property that allows 
us to use fixed-point arithmetic, which is more suitable 
for FPGAs. For more details on VLSI implementations 
and associated block diagrams of these equations see 
[19,20]. 

B. Geometrical Interpretation 
of the Ladder Filter 

The relations (1) are normalized versions of "Schur 
complement" identities relating the covariances of ran­
dom variables. Since the Schur complement identities 
essentially capture the theorem of Pythagoras in Eu­
clidean space, normalization, which amounts to pro­
jecting the objects from Euclidean space onto the unit 
sphere, yields identities of spherical geometry. 

As a result the relations (1) have an elegant interpre­
tation in terms of spherical trigonometry. Considering 
the triangle FRB in Fig. 5, and measuring both the an­
gles R, F, B and the sides r, t, b in radians, we can 
write three identities from spherical trigonometry: 

I cos r = cos R . sin t . sin b + cos t . cos b 

cos F = (cos t - cos r . cos b) / (sin r . sin b) 

cos B = (cos b - cos r . cos f) / (sin r . sin f) 

(2) 

These identities enable the determination of infor­
mation to the left of the dashed line (L) in Fig. 5 in 
terms of information to the right of (L). 

With the correspondence 

{
p = cos R, 

p+ = cosr, 

v = cos t, 
v+ = cos F, 

r] = cosb, 

r]+ = cos B, 
(3) 

relations (1) are seen as relations providing the solution 
of a spherical triangle given two sides and the included 
angle. Such equations are found in navigation on the 
Earth's surface. Voider [6] developed the CORDIC pro­
cedure precisely to solve such problems digitally and 

90 

Figure 5. Geometric interpretation of the normalized ladder algo­
rithm in terms of spherical trigonometry. From the information bRf, 
to the right of (L), we deduce the information Fr B to the left of (L). 

This amounts to computing a rotation, from F to B, as the composi­
tion oftwo rotations, from F to R and from R to B. 

showed how to link CORDIC rotations for that pur­
pose. Following a similar vein, Lee et al. [10] pro­
posed a way for linking the three types of CORDIC 
operations of Walther [7] to evaluate the expressions 
(1) (this way is also presented in [18], with a slight 
modification). Is this way optimal? Can our geometri­
cal insight enable us to improve on it? Since the work 
[3] on quatemion CORDIC algorithms we know how 
to perform 3-D rotations in a CORDIC-like fashion by 
working simultaneously on all 3 components. Can this 
be exploited? 

Geometrically, we are interested in the result of the 
composition of the "backward" rotation from F to R 
along b and the "forward" rotation from R to B along 
t; the cosine of the angle R between the sides b and 
t corresponds naturally to the normalized partial cor­
relation. That result corresponds to the rotation from 
F to B along r, whose parameters are what we seek. 
Appendix A details this composition of 3-D rotations 
and actually obtains as a result a decomposition of the 
rotations in terms of 2-D CORDICs. 

c. Implementation 

Putting some flesh on the skeleton obtained in Ap­
pendix A, the computations are cast in terms of pairs of 
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CITID FIFO 

Figure 6. General dataflow of the proposed filter stage implemen­
tation. 

2-D CORDIC operators (represented below by • and 
0), where the operators do not require the "Z-factor" 
part that computes the angles explicitly. We obtain the 
architecture shown in Figure 6: 

Step 1 

• rotate [~] to force the 2nd component to 0 and 
P 

thus obtain the encoding (sign sequence) of the 
angle R, 

o simultaneously apply the rotation R(R) 
[~ -P], determined by the sign sequence for the 

p p - -
angle R, to the vector [~o] to obtain [~~]. 

p~ 

Step 2 

• apply the rotation R(f) = [~ -iJ], determined by v v 
the encoding of f (obtained in Step 5 of previous 

d ) t [pry] bt' [Vpry] _ [ v' ] up ate 0 0 to 0 am iJpi} - i}. piJ . 

o apply the rotation R(f) to the vector [_~ry] to 
obtain [P;]. 

~ 

Step 3 

• apply R(R) to [~:] to get [-~'], where r] t = r] . pv, 
v ~ 

o employ the hyperbolic CORDlC mode and force 
to 0 the 2nd component of the vector [ p~] to ob­
tain p+ as 1 st component. 

Step 4 

• rotate [ _ <_ ] to force the 2nd component to 0 and 
thus obil~ as 1st component pv = p+v+ (and, 
as a byproduct, a not very accurate-when pv is 
small-encoding of b, that we shall not use), 

o compute, in the linear mode, the encoding of 1/ p+ 
(non-restoring division) and, simultaneously, ap­
ply this sign sequence to p~ to get ~+. 

Step 5 

• rotate [_ v: ] to force the 2nd component to 0 and 
P+"+ 

thus obtain the encoding (sign sequence) of the 
angle F to be used as encoding of the "angle" f 
in Step 2 for the next update. 

o apply in the linear mode the sign sequence enco­
ding 1/ p+ both to v*, to get v+, and to r]*, to 
get r]+. 

The second CORDlC at Step 4 is a modified version 
of the standard CORDlC architecture. It computes the 
sign sequence encoding of 1/ p+ and, simultaneously, 
applies this sign sequence to pv to get v+. With Xo = 1 
and Yo = 0, the recurrence is of the form (assuming 
1/ p+ does not exceed 8, i.e., Irho+1 does not exceed 
0.992): 

Xi+l = Xi - s~gn Xi . 2 i . ~~ { 
. ( ) 22- i -

Yi+l = Yi + slgn(Xi) ·2- . pv 
(4) 

From the recurrence relation, one can see that Eq. (4) 
fits on the shift-and-add resources of a CORDIC archi­
tecture. 

The accuracy d needed for the computations will 
typically be about 16 to 20 bits. However, scaling 
plus additional iterations for convergence (in the hy­
perbolic case) impose slightly more than d pipeline 
stages within a CORDlC unit [4, 9]. 

Using the pipelined, parallel CORDlC presented be­
fore, we distinguish 4 basic architectures based on the 
number of CORDICs used: 

1. minimal: 1-2 CORDlCs 
2. based on the 5 steps of computing I stage of the 

filter: 2·5 CORDlCs 
3. based on the number of stages in the filter: 

2·n CORDlCs 
4. fully pipelineable, maximal performance: 

2 . 5 . n CORDlCs 

All cases require some amount of memory, or shift­
registers (FIFOs), to store intermediate values of the 
computation. Xilinx CLBs can be configured to 16-
bit FIFOs enabling a very efficient implementation of 
the intermediate shift registers. Note that we do not 
require all three CORDlC equations, using only the 

91 



www.manaraa.com

218 Mencer et at. 

x and y pipes, we save 33% of area. Also each case 
has different requirements on reconfigurability on the 
CORDICs. 

In all cases the delay for 1 result is 5 . n . d clock cy­
cles. However, throughput differs with pipeline depth. 
In case 4, with 10· n CORDICs, throughput is 1 clock 
cycle between results. Case 3 with 2 . n CORDICs re­
sults in 5 clock cycles between results. Case 2 with 10 
CORDICs results in n clock cycles between results. 
Finally, case 1 requires (1-2)·5· n clock cycles be­
tween results. 

D. Discussion 

In order to understand the advantages of the geometri­
cal interpretation we compare the above implementa­
tion to an earlier implementation with CORDICs (see 
[10, 18]). Both implementations require 10 CORDICs. 
The earlier implementation employs all 3 pipelines 
(x, y, and z) as opposed to only (x, y) CORDICs in 
the proposed implementation. Thus, the geometrical 
interpretation gives us 17% reduction of latency with a 
45% reduction of area for the fully pipelined case 4 (see 
above). However the earlier implementation could be 
modified to also use sign encodings of the z-quantities 
thus giving about the same latency and area. The ge­
ometrical approach has the advantage of being more 
systematic, less empirical, and therefore more apt to 
be used to create compilers for reconfigurable comput­
ing that can target CORDIC arithmetic units. While 
being a good starting point, our geometric viewpoint 
has probably not been fully exploited here and we still 
have hope for a more parallel computational scheme, 
operating on 3-D vectors. 

An alternative way of using the geometrical insight 
could be derived from the general update equation (32 
in [21]) which is not only valid in the scalar case but 
also in the multi-channel case. The idea in [21] is based 
on a block diagonalization of the singular-value decom­
position type. This could be done for instance using an 
extension of the CORDIC idea to quaternion represen­
tation as in [3]. 

V. Conclusions 

We have implemented high-throughput CORDICs 
for reconfigurable computing in our object-oriented 
hardware design environment-PAM-Blox-and opti-
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mized generic parallel CORDICs with state-of-the-art 
synthesis tools. 

While commercial synthesis tools are very efficient 
in optimiZing CORDICs for ASICs, FPGAs do not 
seem to lend themselves to these types of optimiza­
tions. At a higher level, in order to give an idea of what 
is involved in the automatic generation of CORDIC­
like units for specific applications, we have decom­
posed the computations of an adaptive filter in terms 
of CORDIC operations, using geometric insights that 
could lead to high-level compilation to CORDICs. 

For PAM-Blox, the natural extension is to integrate 
behavioral synthesis into module generation e.g. us­
ing synthesis from C [22, 23]. A behavioral method 
within the hardware object could be automatically 
transformed into multiple structural C++ methods. 

CORDICs map well onto FPGAs. Due to their 
small area requirement, CORDICs-especially paral­
lel forms-are most useful for certain highly paral­
lelizeable and pipelineable applications which can take 
advantage of a large number of CORDIC units on a 
chip. 

Appendix A 

Compositions of rotations in 3-D space are best repre­
sented in terms of quaternions. Simply, and to facilitate 
the relation with [3], rotation by an angle u around an 

. [ ]T· h 2 2 2 1· 1 aXlsu= ux,uy,u z WIt ux+uy+uz = Iseva-
uated by means of a multiplication by the matrix: 

Q~[: 
-x -y 

-Z] w -z 
y where w = cos U 

y Z W -x 

Z -y x w 

and [~] [::],inu (AI) 

The product of the rotation by b around b (matrix Q b) 
followed by the rotation by f around f (matrix Qf) is 
given by the first column of Qf . Qb, hence, in order to 
determine the resulting rotation angle r and direction 
r, it is sufficient to multiply the first column of Qb by 
Q f. Exploiting the structure of Q f and denoting by x 
the cross-product of two vectors, the evaluation of the 



www.manaraa.com

Application of Reconfigurable CORDlC Architectures 219 

first column of the product yields 

[
COS r ] 

r· sin r 

[ 
cosjcosb-(fsinf)·(bsinb) ] 

- (fsinf)cosb+cosj(b sinb)+(fsinf) x (b sin b) 

[ 
cosjcosb-(f·b)sinjsinb ] 

= fsinjcosb+bcosjsinb+(fxb)sinjsinb . 

(A2) 

Specifically (see Eq. (3) and Fig. 5) 

I

COSf=V, sinf=v, f=[J,o,of, f·b=-cosR=-p, 

cosb=~, sinb=ij, b=[-cosR,O, sinRf=[-p,Q,'of, 

cos r = p+. sin r = .0+, f· r = cos B = ~+, b· r = cos F = "+. 

(A3) 

Thus, expressing the vectors f, band r in terms of 
their components, to compose the rotations we compute 
the product 

[; ~" ~ ~-l [-~ryl = [~; ~ ;~:l' (A4) o 0 v -v 0 -PYJV 
o 0 v v pry PYJV 

This equation provides the skeleton of the decompo­
sition of the adaptive filter computations into CORDlC 
operations. Since Qf is the composition of two inde­
pendent plane rotations, this decoupling should be ex­
ploited: it is preferable here to employ 2-D CORDlCs 
rather than a quaternion CORDIC (We outline an al­
ternative approach that leads to the use of quaternion 
CORDlC at the end of Section 4.D), and apply two 2-D 
CORDlCs in parallel for speed. The equation implies 
that P+ = cos r may be obtained as the first component 
of 

The second component of that vector is equal to 
the first component of r sin r, i.e., f· (r sin r) = (f· r) 
sinr = YJ+p+. We denote YJ* this second component. 

Similarly v+ can be obtained according to v+p+ = 
(b· r) sinr = b· (rsinr) = -PYJ* + pv t , where vt is 
the second component of the vector 

Thus, denoting v* = v+p+, -v* may be obtained as 
the first component of 

Hence, first we compute 

(AS) 

then we evaluate 

[-v*] [-v*] [P -P][YJ*] 
YJT - YJ·pv - p P vT 

(A6) 

and finally we obtain 

(A7) 

This way of decomposing the Eq. (1), guided by 
our geometric interpretation, leads to a computational 
structure different from that of [10, 18]. 

Proceeding with our geometrical approach we shall 
also use the relation between the sines of the angles 
and sides of a spherical triangle ("the law of sines"), 

P 

P+ 

to update the sines v and ry: 
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A Configurable Logic Based Architecture for Real-Time Continuous Speech 
Recognition Using Hidden Markov Models 

PANAGIOTIS STOGIANNOS, APOSTOLOS DOLLAS AND VAS SILlS DIGALAKIS 
Technical University of Crete, 73100 Chania, Crete, Greece 

Abstract. An architecture is presented for real-time continuous speech recognition based on a modified hidden 
Markov model. The algorithm is adapted to the needs of continuous speech recognition by efficient encoding of 
the state space, and logarithmic encoding of the weights so that products can be computed as sums. The paper 
presents the algorithm and its application related modifications, the mapping of the algorithm to a special purpose 
architecture, and the detailed design of this architecture using configurable logic. Emphasis is given on how the 
attributes of the algorithm are exploited in a configurable logic based design. A concrete design example is presented 
with a coprocessor engine having one large FPGA, 64 Mbytes of synchronous DRAM (SDRAM), a small FPGA 
as a SDRAM controller, and 2 Mbytes SRAM. This engine operating at 66 MHz performs roughly nine times as 
fast as a high end personal computer running a fully optimized version of the same algorithm. 

1. Introduction 

Speech recognition is widely considered as one of the 
main areas of growth in the near future [1], with new 
applications such as voice commerce (v-commerce), 
which is a variant of electronic commerce (e­
commerce). In order for this growth to be realized, 
three problems need to be addressed: 

• The recognition needs to be performed on continuous 
speech by systems which are speaker-independent 
and require no per-speaker training, 

• The recognition rates need to be improved, and, 
• The resulting solution from a computational point of 

view must be implementable in a real-time system 
(preferably embeddable). 

The above three problems are interrelated, as some 
of the best algorithms for speaker-independent, 
continuous-speech recognition are also the most 
computationally demanding. Although the speed of 
general-purpose systems (usually personal computers) 
improves substantially at the rate described by Moore's 
law, the desire to have ever-increasing recognition rates 

and even multi-channel systems for commercial appli­
cations (e.g. for mail order sales) points towards the 
direction of specialized hardware. 

Software approaches to speech recognition already 
exist. IBM's Via Voice and Dragon's Naturally Speak­
ing are large-vocabulary dictation applications that 
run on PCs. There is a very large difference, how­
ever, between the large-vocabulary continuous-speech 
recognition (LVCSR) systems used in the DARPA 
benchmarks and products that must run at or even 
faster than real time. Traditionally, benchmark LVCSR 
engines run at tens or even hundreds times slower 
than real time, and perform significantly better than 
their product counterparts. Dictation products such as 
those mentioned above are characterized by fairly good 
performance with fairly inexpensive prices that are 
likely to drop dramatically in the future. An acceler­
ator to replace dictation products would remove two of 
their most desirable features, simplicity and low cost 
(even high end software over time gets discounted or 
even bundled with standard software distributions). A 
hardware accelerator is especially useful in multi-port 
applications for telephony platforms, and in applica­
tions which require the lowest possible word error rate. 
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A recognition server running on a single host computer 
serves, with the aid of accelerators, a number of differ­
ent channels connected to it. 

Technology-wise, the fastest solution for hardware 
implementation of any system is with VLSI design, 
and such designs have already been made [2, 3]. These 
approaches, however, have not led to widespread us­
age because the design time for VLSI design, com­
bined with its lack of flexibility once implemented, 
lead to rapid obsolesense of such systems. The case 
is especially aggravated by the quick pace of devel­
opment of new algorithms and speed improvement of 
general computers. Therefore, an alternative approach 
is needed, in which the hardware does provide at least 
one order of magnitude speedup over software solu­
tions, but at the same time remains flexible enough 
to run different variants of some class of algorithms, 
with its datapath and state-space customized according 
to the application. The usage of Field Programmable 
Gate Arrays (FPGA) [4] was thus considered as a good 
tradeoff between speed and flexibility, the latter being 
achieved through reconfiguration. 

The usage of FPGA's for speech recognition is not 
entirely new. The implementation of hidden Markov 
Models, a highly successful model in continuous 
speech recognition was done using FPGA's in 1995 
[5], for a 255 discrete word vocabulary (non continu­
ous speech). A reconfigurable Viterbi decoder (which 
too is one of the key algorithms in speech recognition) 
was reported in 1996 [6]. To date, however, no system 
has appeared that partitions the entire continuous, large 
vocabulary speech recognition problem to software and 
reconfigurable hardware subsystems. Such a system is 
presented in this work. An architecture has been de­
signed for the computational core of a state-of-the-art 
speech recognition algorithm. The new architecture is 
in effect a coprocessor, relying on the front end for pre­
processing of data (e.g. Fourier transforms), which can 
be easily done in software, whereas speeds up by an or­
der of magnitude the modified Hidden Markov Model 
computational core which accounts for 80% of the total 
computations (including preprocessing and grammar 
extraction). 

The emphasis of this paper is on how the new archi­
tecture was developed in order to meet its performance 
goals for a specific set of parameter values, but the 
solution is general enough that through reconfigura­
tion different systems can emerge with no board-level 
changes. Section 2 briefly presents the Hidden Markov 
Model (HMM) and modified HMM which are used in 
continuous speech recognition. Section 3 presents the 
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new architecture, whereas Section 4 presents design­
related issues, including usage of resources, and system 
speed. Finally, the status of the system and some con­
clusions of this work are summarized in Section 5. We 
note that although it is clear that such a coprocessor 
can form the basis for large, server type applications, 
this paper focuses on how a specific top performing 
algorithm which to date does not run in real time can 
be sped up to multi-channel real time operation. The 
specifics of its usage in multi-channel servers, however, 
is beyond the scope of the paper. 

2. A Modified Hidden Markov Model 
for Continuous Speech Recognition 

2.1. HMM-Based Speech Recognition 

Today's state-of-the-art speech recognizers are based 
on statistical techniques, with the hidden Markov mod­
els being the dominant approach [7]. The typical com­
ponents of a speech recognition and understanding 
system are the front-end processor, the decoder with 
its acoustic and language models, and the language 
understanding component. The latter component ex­
tracts the meaning of a decoded word sequence, and 
is an essential part of a natural language system. The 
remainder of this section briefly reviews the front end 
and the decoder. 

The front-end processor typically performs a short­
time Fourier analysis and extracts a sequence of obser­
vation vectors (or acoustic vectors) a = [0 I, O2 , ... , 

OT]. Many choices exist for the acoustic vectors, but 
the melwarped cepstral coefficients (MFCCs) have ex­
hibited the best performance to date [8]. The sequence 
of acoustic vectors can either be modeled directly, or 
vector-quantized first and then modeled. 

The decoder is based on a communication theory 
view of the recognition problem, trying to extract the 
most likely sequence of words A = [AI, A2, .•• , AN] 
given the set of acoustic vectors a. This can be done 
using Bayes' rule: 

The discrete probability peA) of the word sequence 
A is obtained from the language model, whereas the 
acoustic model determines the likelihood p(a I A). 

In HMM-based recognizers, the probability of an 
observation sequence for a given word is obtained by 
building a finite-state model, possibly by concatenating 
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models of the elementary speech sounds or phonemes. 
The state sequence S = [SI, S2, ... , ST] is modeled as 
a Markov chain, and is not observed. At each state St 
and time t, an acoustic vector is observed based on the 
distribution bSt (Ot) = p( Ot I St), which is called output 
distribution. Because HMMs assume, for simplicity, 
that observations are independent of their neighbors, 
first- and second-order derivatives of the cepstral co­
efficients are included in the acoustic vector Ot. If 
the front-end vector quantizes the acoustic vectors, the 
output distributions take the form of discrete probabil­
ity distributions. If the acoustic vector generated by 
the front end is passed directly to the acoustic model, 
then continuous-density output distributions are used, 
with the multivariate-mixture Gaussians being the most 
common choice: 

K 

bs(Ot) = LP(W; I S)N(Ot; fls;, ~sd, (2) 
;=1 

where peW; I S) is the weight of the ith mixture com­
ponent in state S, and N( 0; fl, ~) is the multivariate 
Gaussian with mean fl and covariance ~. The mix­
ture weights are nonnegative and must sum to one. 
The continuous-density HMMs (CDHMMs) are used 
in most state-of-the-art large-vocabulary continuous­
speech recognition systems, including the Decipher 
system of SRI International [9]. The main disadvan­
tage of CDHMMs is their computational complexity, 
especially for large-vocabulary applications, with de­
coding times being much slower than real time when it 
is desired to achieve the best possible recognition per­
formance. Decoding in real-time is achieved when the 
decoding time is less than or equal to the length of the 
recognized utterance. 

In a HMM-based speech recognizer, HMMs rep­
resent the basic speech sounds or phonemes. To 
model coarticulation-the influence of neighboring 
phonemes on the pronunciation of a phoneme due to 
the inertia of the vocal tract-different HMMs are used 
for a particular phoneme based on the context in which 
it appears. This results to a large number of context­
dependent phone models. A phone is the acoustic re­
alization of a specific phoneme in a particular context. 
Each of these models consists of a number of states 
(typically three to five) that correspond to the begin­
ning, middle and end of the phone. 

The computation of the Gaussian-mixture output 
probabilities (2) for large-vocabulary applications can­
not be performed in near-real time. A more efficient 
scheme was proposed in [9], by clustering different 

states together based on the similarity of their distri­
butions. These groups of states use Gaussians from a 
common set, which is defined as a genone. Each state 
retains, however, its own mixture weights peW; IS). 

Decoding in HMM-based speech recognizers is per­
formed by searching for the most-likely word sequence 
A. This is often approximated by finding the most­
likely state sequence in a finite-state network that is 
built by connecting the basic phone-HMMs according 
to a set of grammar rules. Although many algorithms 
exist, the most common is the Viterbi beam search [10]. 
The time-synchronous beam search is a suboptimal ver­
sion of the Viterbi I algorithm, in which only the most 
likely states survive (are active) at each time. The set of 
states that are active at each time constitutes the search 
space. Decoding time can be adjusted by controlling 
the beam width, that is, the maximum distance (in log­
arithmic scale) that a particular theory can have from 
the current best in order to survive. Reducing the beam 
width speeds up decoding, but can also introduce search 
errors. 

2.2. Discrete-Mixture HMMs 

In [11] we developed a novel encoding scheme for 
the transmission of the MFCCs in a client-server ar­
chitecture for speech-enabled applications over the 
World Wide Web (WWW) and wireless channels. By 
using subvector quantization and a bit-allocation al­
gorithm that was driven by speech recognition perfor­
mance, we were able to encode the 13 MFCCs using 
as little as 20 bits in noise-free environments, while 
maintaining the recognition performance of a high­
quality CDHMM recognizer. This was a rather sur­
prising result, given that HMM-based state-of-the-art 
recognition systems today represent the MFCCs using 
floating-point arithmetic and model their distributions 
with Gaussian mixtures. 

The possibility of representing the MFCCs with 
a small number of bits, instead of the 416 (= 13 
coefficients x 32 bits per coefficient) that are tradi­
tionally used in CDHMMs, in addition to being ad­
vantageous for transmission and storage, has serious 
implications in acoustic modeling. Using Gaussian 
mixtures to model a set of coefficients that can be rep­
resented with 20 bits is clearly overkill. In [12] we 
demonstrated that the high level of recognition perfor­
mance of CDHMMs can be maintained with a far more 
efficient type of HMM, the discrete-mixture HMM 
(DMHMMs) with subvector quantization of the coef­
ficient parameters. 
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Using subvector-quantization, we first partition the 
vector of MFCCs into L subvectors, 01 = [011, 
012, ... , Old, and then we quantize each subvector 
using a separate VQ codebook, 

XI = vq(OI) = [Vq(OII), vq(012), . .. , vq(Old] 

= [XII, XI2 ,···, Xld. 

Then, the Gaussian mixture output distribution (2) in 
CDHMMs can be replaced with a mixture of discrete 
probability distributions of the following form: 

K L 

bs( 01) ~ P(vq( 01»-L P(Wi IS) n P(Xlj I Wi, S), 
i=1 j=1 

(3) 

where P(Xlj I Wi, S) is the probability of observing the 
discrete symbol X lj = vq( Olj) for the jth subvector. 
The output distribution introduced above assumes that 
the indices of different subvectors are conditionally in­
dependent given the state and mixture index. Depen­
dencies between the different subvectors for a given 
state are modeled through the mixture components. 

When compared to the conventional CDHMMs, 
the discrete mixture HMMs replace a multivariate 
Gaussian density with the product of L discrete distri­
butions, one for each subvector. The amount of com­
putation can be reduced by decreasing L. At the same 
time, however, the number of bits required to represent 
each sub vector increases, and this corresponds to an ex­
ponential increase in the amount of memory required 
to store the look-up tables of the discrete distributions. 
In [12] we found that a good compromise is to use 
L = 15 subvectors, and we showed that a speed-up of 
a factor of two to three can be achieved using this form 
of output distribution, while maintaining the level of 
performance of CDHMMs. 

The DMHMM results are summarized in Fig. 1, 
where we plot the performance of two systems, a base­
line CDHMM and a DMHMM with 15 subvectors, 
versus the decoding time. Performance is measured 
in Word Error Rate (WER), that is, the percentage of 
words that are erroneously recognized, including sub­
stitutions, deletions and insertions. We use the air-travel 
information domain (see Section 2.3), and the decod­
ing time is adjusted by varying the beam width. The 
DMHMM system performs uniformly better than the 
baseline CDHMM system. Although the DMHMM is 
two to three times faster than the CDHMM, the WER 
increases (search errors are introduced) when the beam 
width is adjusted so that decoding is performed in less 
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Figure 1. A comparison of CDHMM and DMHMM. 

than two times real time. We also found, at different op­
erating points, that roughly 90% of the decoding time 
is spent on the phone-processor, which performs the 
Viterbi search within a HMM phone model. 80% of 
this time is spent computing the output probabilities (3). 

The previous experiments were performed on a P-II 
266 MHz that was available at that time. Faster pro­
cessors, which have been made available since then, 
can speed up the recognizer but cannot achieve real­
time performance. In a recent test we performed in our 
lab we found that two, otherwise equivalently config­
ured PCs, with P-II processors running at 266 and 333 
MHz, respectively, had only a 7% difference in decod­
ing time. 

2.3. A Realistic Continuous Speech Application 

So far, we have presented the DMHMM model as an 
appropriate modification of the general HMM for the 
problem at hand. In this section we constraint the prob­
lem size so that a meaningful FPGA-based architecture 
can be developed and compared with software-only 
methods. The application we selected for this work is 
the air-travel information (ATIS) domain [13]. In the 
ATIS domain, a user can get flight information and 
book flights across the United States using natural lan­
guage. It consists of a vocabulary of approximately 
1,500 words, with a moderate perplexity (a measure of 
difficulty). The recognizer for the ATIS domain is con­
figured with 10,872 states, 1105 genones (that is, states 
are clustered in 1105 groups) and each genone is com­
prised by 32 Gaussians. In Section 3 we will present 
the complete reconfigurable architecture for this appli­
cation, but we would like to emphasize that because it 
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is reconfigurable, a broad set of different alternatives 
can be mapped on the same hardware with minimal 
design changes and no board-level modifications. 

2.4. System Partitioning in Software and Hardware 

Figure 1 shows the word error rate as a function of 
the processing time for the reference system. Even 
with the reduced computational requirements of the 
DMHMM model vs. the CDHMM model we see that 
the lowest WER requires over twice the speed of a 
general purpose computer. Even with newer models, 
it can be appreciated that the corresponding WER can 
be further reduced with specialized hardware, or, the 
personal computer resources can be freed up from per­
forming speech recognition only. In the two points of 
the DMHMM curve the phone processing vs. gram­
mar extraction times are presented. The phone pro­
cessing accounts for 90% and 87% of the total times, 
and, not shown in the curve, 90% of these times are 
spent computing transition probabilities which thus ac­
count for 81 % and 78% of the entire workload, includ­
ing front end processing and grammar extraction. This 
leads to a natural software-hardware decomposition of 
the DMHMM model, in which the hardware architec­
ture we will present speeds up roughly 80% of the entire 
workload. This part is the computation of the relation 
which gives the output probability P(XI I S) for a given 
set of [S, X I]' The architecture was designed for a sys­
tem that has 10872 states, 32 weights per state, 11 05 
genones and its observation vectors consist of ISS-bit 
elements. 

This breakdown allows for the reconfigurable en­
gine to speed up the evaluation of the observation­
distribution likelihoods (or output probabilities), which 
are the computational core of the application, whereas 
the front end processing, and the HMM search 
and grammar extraction are performed on the host 
processor. 

3. An Architecture for Real-Time Computation 
oftheDMHMM 

The system architecture is dominated by two major 
facts that arise from the theoretical model. Those facts 
are: 

• The relationship that needs to be computed for each 
set [S, X I] can be divided in two parts: 

l. The computation of the products P(Wi I S) TI}~l 
P(Xtj I Wi, S), where S is the active state, 
P(Wi I S) is the ith mixture weight of the active 
state, and X lj is the jth observation vector 
element, and P(Xlj I Wi, S) is the probability of 
observing the discrete symbol Xtj for the jth 
subvector. 

2. The computation of the sum L~~l P(Wi IS) 
TI~~l P(Xtj I Wi, S) for each active state of the 
search space, together with the comparison for 
the extraction of the maximum output probabil­
ity. Those two parts can be designed separately 
as two hardware systems. 

• The calculation of probability products can be con­
verted to sums oflogarithms. This approach has two 
benefits: it makes the design of the ALUs less com­
plex (space reduction) and it speeds up the whole 
process (performing one addition and one log-to­
fixed point transformation is computationally less 
expensive than performing one multiplication). 

Those two facts led to an architecture with the fol­
lowing properties: deep pipeline, parallelism, parti­
tioned ALUs and data restructuring FIFOs. The parts 
which form the entire system are shown in Fig. 2. These 
are: 
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Figure 2. Block diagram of the system. 
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• The interface between the system and the host com­
puter via the PCI bus of the host 

• The system that computes the probabilities 
n !5 

P(Wi IS) j=! P(X1j I Wi, S) 
• The look up table from logarithm to a fixed point real 

number 
• The system that computes the output probabilities 

",32 n!5 Li=! P(Wi I S) j=! P(X1j I Wi, S) 
• The memory, SDRAM, which stores the data that is 

necessary for the calculations, and, 
• the control of the system 

Figure 2 shows how the new architecture communi­
cates with the outside world via the PCI bus and input 
FIFO, as well as the SDRAM controller which has been 
designed to ensure correct operation and data stream­
ing of the DRAM. The rest of this paper will focus on 
the computational aspects of the new architecture, but 
it is understood that the elements shown in Fig. 2 are all 
needed. The input FIFO has not been designed yet be­
cause as will be described below, for the first generation 
of the system it is envisioned that a commercial board 
which already has a PCI interface and a run time envi­
ronment (e.g. the Compaq Labs PAMETTE [14]) will 
be used. The PAMETTE already has FPGA's which 
can be used to implement the FIFO and data buffering. 

The system has three kinds of input and two kinds 
of output as Table 1 shows (together with their width). 
The inputs are: the index of the active genone (1105 
possible values), the index of the active states (10872 
possible values), and the observation vector elements. 
Those inputs produce the output probability for each of 
the active states and the maximum output probability 
for the active states. 

The main architecture and data flow of the new sys­
tem can be viewed in Fig. 3. As compared to Fig. 2, 
Fig. 3 does not show 110 but only the calculation sub­
systems and memories. 

Table I. Inputs and outputs of the system. 

Information name Kind of information Values Width (bits) 

Genone index Input 1105 11 

State index Input 10872 14 

Observation element Input 32 5 

Output prob. Output 16 

Max. output prob. Output 16 
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Figure 3. Block diagram of the architecture. 

3.1. The SDRAM Subsystem 

The first subsystem, which has all the data that is neces­
sary to calculate the output probabilities is a 64 Mbyte 
SDRAM with a 64-bit wide datapath. Its pre-stored 
data includes: 

• The probabilities P(X1j I Wi'S) 

• The probabilities P(Wi I S) 

where Xtj are the observations, Wi are the weights of 
the states and S is the active genone. Those proba­
bilities are stored in their logarithmic value and have 
a width of 16 bits, which means that each memory 
location has four values stored. In order to access se­
quentially a large amount of data, using the capabili­
ties for bursty transfers that the SDRAM technology 
offers, the address of each memory location has a spe­
cific meaning. As Fig. 4 shows each address gives the 
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P(W4IS) P(WsIS) P(W6IS) P(W7IS) 

P(WoIS) P(X'jIW"S) P(W2IS) P(W3IS) 

Rowadr. 

Rowadr. 

Column adr. 

Act. state indx. 
S1,SO 

Act. state indx. 
S3,S2 

Column adr. 

P(XijIW4,S) P(X,jIW 5,5) P(XijIW"S) P(XijIW7,S) 

I ~ P(XijIWo'S) P(X'IIW"S) P(XtIIW2,S) P(XijIW3,S) 

Bank: 10 (2) 
w: Ro 

000110 
Colu 

11010 

010101 
mn: 
0000 

Figure 4. Organization ofthe SDRAM contents. 

information of the genone, the active state, the obser­
vation and the weight to which the information refers. 
The Row, Bank, and Column of the full SDRAM 
address are formed as shown in Table 2. 

According to this bit the rest of the address bits 
follow the rule that is shown in Fig. 4. For example, 
column 110 11 0000 of row 000110010 1 01 in bank 10 
contains the probabilities P(Xtj I Wi, S), where S = 

Table 2. Address generation for the SDRAM. 

Genone indx. S ~j 

00011001010, Xtj = 11011 and for the j = 01002-th 
subvector. With this kind of addressing the system 
can access all P(X tj I Wi, S) probabilities for a specific 
Xtj , a specific j, and its 32 weights with just one ad­
dress when the SDRAM works in the burst mode [15], 
where it accesses 8 sequential addresses. This fact, 
together with the four internally interleaved banks of 
the SDRAM, is very important for the speed of the 

Kind of probability Row (12 bits) Bank (2 bits) Column (9 bits) 

P(Xtj I Wi, 5) 

P(Wi IS) 

S[IO ... 0]Xt j[4] Xtj[3 ... 2] Xtj[I ... 0]J[3 ... 0]000 

10(262410 + S) [13 ... 4] (262410 + S) [3 ... 2] (262410 + 5) [1 ... 0] 0000000 
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Table 3. The opcodes of the subwords. 

Opcode Denotation 

00 Command 

01 Genone index 

10 Active state index 

II Observation vector element 

whole system as it can provide the system with data on 
every cycle. The address generation and the write/read 
cycels are being controlled by a FSM. 

3.2. The I/O and Look Up Table Subsystems 

The second and the fourth blocks shown in Fig. 3, 
which will be presented later, are the two systems that 
do all the calculations. The SRAM that is between them 
acts like a LUT that converts 16-bit wide logarithms to 
16-bit fixed point real numbers. The system I/O with 
the host computer, for both command and data trans­
actions, is through a 64-bit wide PCI interface, e.g. 
the Compaq Labs PAMETTE [14, 16] or the ALTERA 
ARC PCI. Each word that comes from the PC! con­
sists of four 16-bit wide subwords. According to the 
opcode, shown in Table 3, which the two MSB of each 
subword form, the system knows what kind of informa­
tion the rest of the subword carries. This information 
can be: 

• The index of the active genone which is II-bit wide 
(1105 genones) 

• 5-bit wide elements, X tj , of the observation vector 
Xt 

• The 14-bit wide indices of the active states (10872 
states) 

• Command 

The subwords are generated at the output of the FIFO 
that stores the incoming words. If it is a command it 
gets to the controller of the system. If not it is being 
used in order to build the address for the SDRAM. 

3.3. The DatapathJor the Probability Calculations 

The procedure of computing the output probabilities 
for a given set of active states and a vector X t of 
sampled speech begins with the restructuring of the row 
data that comes from the host computer. The controller 
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Figure 5. Parallelism in the addition datapath. 

does the necessary actions and produces the addresses, 
which refer to the data associated with the currently 
active state and observation vector. The outputs of the 
SDRAM are ready to be processed. 

The system which produces the P(Wi I S) f1}~1 
P(Xtj I Wi, S) quantities consists of four equal slices, 
shown in Fig. 5. This way a parallelism of 4 is be­
ing achieved. Each slice does the computations in two 
parts: first it computes 8 out of the 32 quantities 
f1}~IP(Xtj I Wi, S), each slice for 4 values of i, and 
then it produces the full product for the weights it holds. 
Such a slice (shown in Fig. 6) consists of two parallel 
FIFOs, which restructure the data from the SDRAM in 
order to feed the adder. Each cycle it gets new datum 
from the memory and puts the 8 LSBs in the small FIFO 
and the 8 MSBs in the large FIFO. At each cycle at the 
output of the FIFOs, the LSB part of input n comes out 
together with the MSB part of input (n - 1). This does 
not hold for the first 8 words of data at the beginning 
of the procedure. Those words bypass the FIFOs and 
the adder in order to fill the second set of FIFOs, which 
hold the sums. After filling this set it is restructured 
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Figure 6. Datapath for addition. 

8 

8 

by using the left FIFO only as a cyclic one (while the 
right FIFO is idle), and the same time the input FIFOs 
are being filled with the next set of data. This oper­
ation lasts for 7 cycles, at the end of which, the data 
in the second set of FIFOs have the same alignment as 
those in the first set. From this point the slice performs 
one addition per cycle. The algorithm that describes the 
production of the [1~~1 P(Xt) I Wi, S) quantities is the 
following: 

for j = 1 to 15 do 
for i = 0 to 7 do 

add P(Xt) I Wi, S) to [1~:: P(X t) I Wi, S) 
store sum in FIFO 

end for; 
end for; 

In order to describe the systems which do the com­
putational work, first the partitioning of the ALUs 
has to be presented. Several models of adders were 
used as ALUs before deciding on a two stage pipeline. 
The problem was the addition speed. Even fast carry­
lookahead adders, which normally give high speeds 
in VLSI, were a big bottleneck in the system perfor­
mance because of the way they were mapped to FPGAs 
(the nature of the logic cells does not allow to imple­
ment them in two stage logic due to fanout and routing 
considerations). This point led to a partitioned adder, 
shown in Fig. 6, which gives a higher clock rate and 
works very fast with bursty input. Every addition needs 
two cycles to produce a result: one for the 8 LSB and 
one for the 8 MSB. But feeding in the second cycle the 
8-bit adder of the first stage with the LSByte of the next 
input the system can keep both 8-bit adders busy every 
cycle. By restructuring the input this way, in each cycle 
the 8 LSB of the nth input are being processed by the 
first stage of the adder and the 8 MSB of the (n - 1 )th 
input by the second. This feature gives the 16-bit adder 
the capability of making n additions in (n + 2) cycles. 

The results of the adder are being kept in the sec­
ond set of FIFOs restructured, but can also be read 
in their actual form from the RESULLREG. After 
computing all of the P's the second FIFO system be­
gins to act as a cyclic one. The reason for this mode 
change, through the multiplexers in its inputs, is that 
the P's have to be used unchanged for the production 
of the P(Wi I S) [1}~1 P(X t) I Wi, S) quantities. The 
algorithm for this second procedure is the following: 

for j = 1 to (number of active states S) do 
for i = 0 to 7 do 

[1 15 
add P(Wi I S) to )=1 P(Xt) I Wi'S) 
give the sum as output 

store [1~~1 P(Xt) I Wi, S) back in FIFO 
end for; 
end for; 

It must be noted that the number of calculations 
in this procedure is not fixed, but it depends on the 
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System of Fig. 5 System of Fig. 6 

/ 1'16 / 1'16 / 1'16 / 1'16 
-- --- --- ---- --.,r .,r .,r ." 

SRAM SRAM SRAM SRAM 

-- '---- .... _-- ---- --
/ 1'16 / 1'16 / 1'16 / 1'16 

." " " " 
Figure 7. Logarithm to fixed point conversion look up table. Compar . 

number of the active states, which vary from 1 to 57 
per genone. Each such state produces 32 outputs (8 in 
each slice). Those results come out from each of the 4 
RESULLREG, in their regular form and not restruc­
tured, and have to be added together in order to give the 
output probability for the active states. In order to com­
pute those sums all the results have to be converted to 
real numbers from logarithms. This is accomplished by 
4 SRAMs, which act like a LUTs, and can be viewed 
as the interface between the two processing units, as 
shown in Fig. 7. 

3.4. The Datapath for the Maximum 
Probability Calculation 

After the conversions the numbers enter the second pro­
cessing unit, which uses 5 partitioned adders, shown 
in Fig. 8. Those adders are organized in three stages, 
shown in Fig. 9 with the necessary registers between 
them. The data that comes from the SRAMs has to 
be restructured again before it feeds the adders. This 
is accomplished using again the system of the two 
FIFOs with different depths. The first stage produces 
the sums of the data that comes from the SRAMs in 
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maxP(XtIS) 

Figure 8. Adder tree and comparator structure to determine 
MaxP(X, IS). 

sets of two. Those sums are being added together in 
the second stage to give the sum of the 4 SRAM out­
puts. The third stage produces the output probability 
P(Xt I S) by adding 8 sequential inputs. The interme­
diate sums are kept in a register, which contains the 
final sum. The next step is to find the maximum output 
probability for a given observation and the set of active 
states. For this purpose the register, which holds the 
output probabilities, is being compared with the regis­
ter that holds the temporary maximum value. Accord­
ing to the output of this comparison the second register 
can be provided with the new or the previous maxi­
mum value through a multiplexer (shown in Fig. 8). 
Both the output probabilities and their maximum value 
feed a FIFO where they are merged in 64-bit words in 
order to be delivered to the host computer through the 
PCI bus. Figures 5 and 6, if put together in one, give 
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max P{><'IS) 

Figure 9. Datapath for adder tree and Max P(X, I S) determination. 

the datapath of the architecture, which has 9 pipeline 
stages. Their control is being done by three Mealy­
model FSMs [17, 18], which cooperate through control 
signals. The first controls the memory, the address gen­
eration and the interface with the PCI bus. The second 
controls the first processing unit. When the calcula­
tion of the P's finishes it sends a control signal to the 
third FSM, which controls the second processing unit 
in order to make it begin the procedure of producing 
output probabilities. The control is accomplished by 
loading the registers, the FIFOs, and the control bits of 
the multiplexers in both processing units. The adders do 
not have any control signals. All FSMs were designed 
to reduce the overhead cycles during the calculation 
of the output probabilities. According to the theoret­
ical model, the number of operations needed in order 
to compute all the probabilities for an active genone 

that has N states and an observation vector Xl> is as 
follows: 

• (32 xiS) + (32 x N) = 480+ (32 x N) memory ac­
cesses in order to get the data 

• 32 x 15 = 480 additions for the calculation of 
[l 15 

j=1 P(Xtj I Wi, S) 
• 32 x N additions for the calculation of P(Wi IS) 

[l~~l P(X tj I Wi, S) 
• 32 x N accesses in the SRAM for the log-to-fixed 

point real number transformations 
• 32 x N additions for the calculation of L~:l 

P(Wi I S) [l}~l P(Xtj I Wi, S) 

This gives a total of 480 + (64 x N) memory ac­
cesses and 480 + (64 x N) additions. Using the capa­
bilities of the architecture developed, this amount is 
achieved in 139 + (N x 8) cycles including the wait 
states of the memory, from which 8 are needed for 
restructuring the FIFOs of the first processing unit, and 
8 for the second unit input FIFOs to finish (the clear­
ing of the pipeline at the end of the computation). The 
number of cycles each of the stages of the architecture 
is busy can be seen in Table 4. 

In this table the effect of the pipeline and the paral­
lelism can be seen very clear. The numbers show that 
the system has a constant number of wasted cycles, 
which does not depend on the number of active states. 

Table 5 shows the number of cycles needed for all 
operations and for various values of N. 

Table 4. Active cycles of the stages. 

STAGE 

SDRAM 

First processing unit 

LUT(SRAM) 

Second processing unit 

# of active cycles 

120+ (8 x N) 

120+(8xN) 

(8 x N) 

(8 x N) 

Wasted cycles (wait states and FIFOs) 19 

Table 5. Number of operations and cycles vs. number of N. 

Value Number of Number flsec with 
of N operations of cycles Speedup 66 MHz clock 

5 1280 179 7.15 2.71 

10 1600 219 7.35 3.32 

25 2560 339 7.55 5.14 

40 3520 459 7.67 6.95 

57 4608 595 7.74 9.02 
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If we compare this architecture with a different one 
which can perform one operation per cycle but has no 
parallelism and pipeline, even with the same adders, 
the architecture that was presented above is much faster 
for all the values of N as shown in Table 5. The com­
parison of the numbers gives an average speedup of 
7.5. This speedup, although by coincidence is close 
to the speedup over running the algorithm in soft­
ware, is in fact unrelated to the software execution 
of the algorithm, and it only reflects the effectiveness 
in the utilization of the system resources by the new 
architecture. 

3.5. Reconfiguration Issues 

The architecture which was described above, imple­
ments with great efficiency the modified Hidden 
Markov Model DMHMM shown in Section 2, with 
the specific parameters shown in Table 1. There are, 
however, issues which cannot be addressed in a tradi­
tional VLSI solution, but are readily addressable in this 
architecture due to the usage of reconfigurable hard­
ware. The four most important of these issues are: 

• State space encoding vs. depth of pipeline. 
• Precision of arithmetic when computing the 

P(Wi I S) f1}~1 P(X tj I Wi, S) products 
• Vocabulary increase with SDRAM changes only 
• Collection of statistics 

The state space encoding vs. depth of pipeline ref­
eres to our choice of allocation of the 64-bit SDRAM 
to FPGA datapath. There is no constraint whatsoever 
that this datapath need to be broken down to four 16-bit 
quantities. We can arbitrarily change it to, e.g. three 
20-bit quantities and leave four bits unused. If we do 
change the precision, we will need to change accord­
ingly the pipeline depth ofthe addition datapath (which 
produces the sums oflogarithms) in order to maintain a 
high addition throughput while the SDRAM is in burst 
mode. In this case the SDRAM subsystem need not be 
changed, but there will need to be some provision to 
keep the 16 MSB of the result for the lookup conversion 
from logarithm to integer fixed point. 

The precision of the arithmetic when computing 
the peW; I S) f1~~1 P(Xt) I Wi, S) products (as sums) 
might need to be reconsidered. Indeed, if we consider 
that the arguments we add are 16-bit quantities and the 
result is also a 16-bit quantity, it is obvious that there 
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might be overflow. In practice, however, it is under­
stood that since the quantities in question correspond to 
probabilities that add up to one, and their representation 
is logarithmic, no overflow will occur. If we wanted 
to be conservative, we could hold the addition results 
in 20-bit registers, but then we would have one of two 
undesirable side effects: either the SRAM would be­
come sixteen times larger (four more bits of address), 
or, if we only kept the sixteen MSB there would be a 
danger of using in practice only one quarter of the pre­
cision that the SRAM can otfer us. As the architecture 
stands, it is assumed that in effect the most significant 
bits of the result are zeroes, and 16 bits suffice for the 
logarithm to fixed point real number conversion. Al­
though simulations show that this is indeed the case, 
we may find in the future that there is indeed overflow. 
Due to the reconfigurable nature of the computational 
core, we can decide what is the desired precision, and 
which bits of the result should be used to address the 
SRAM, with no system level changes whatsoever. This 
aspect of the architecture alone signifies why FPGA's 
are not merely a rapid prototyping medium but also a 
means to change the implementation aspects of the al­
gorithm through reconfiguration, without any hardware 
changes whatsoever. This form of possible reconfigu­
ration is not dynamic, but is essential in circumventing 
problems which are normally associated with VLSI. 
Specifically, by allowing a change of the algorithm pa­
rameters, the precision of the arithmetic, and the struc­
ture of the pipeline, we can modify the operation of the 
system in ways that are not possible with VLSI imple­
mentations, even after the system has been produced 
and in operation. 

Although it is obvious that with additional SDRAM 
we could increase the vocabulary, the organization of 
the information in the SRAM, as shown in Fig. 4 de­
termines how the addresses need to be generated. The 
use of reconfigurable hardware means that such a de­
sign change is accomplished with a recompilation of 
the design according to the new desired sequencing. 

Lastly, we have instrumented the computational core 
with statistics of interest. The potential for overflow in 
the additions when we compute the products is mon­
itored, for the reasons that were stated above. Also, 
in order to help with algorithm development and state­
space encoding, not only is the Maximum P(X, IS) 
returned to the host, but also all 32 potential maxima, 
i.e. all P(X, I S) that are returned from the SRAM. In 
practice that means that an utterance is recognized as 
one of 32 different possibilities. Alternative statistics, 
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including burst mode performance of the 110 and to­
tal utilization can be added too, while the system is 
operational. 

The above examples regarding the usage of reconfig­
urable devices demonstrate why FPGA's are not merely 
a low cost prototyping alternative to VLSI design but 
they are a technology of choice in cases such as ours, 
in which the run-time characteristics of a system are 
not fully known. Whereas a lot more can be achieved 
through reconfiguration, and indeed this might be the 
case after the first generation of this system, for its first 
generation the use of FPGA's allows for a hardware 
platform which can achieve the desirable real time per­
formance, while at the same time identifying through 
large scale field usage whether the chosen parameters of 
operation are optimal or not. Given that the algorithms 
evolve at a fairly rapid pace, it may turn out that the 
best solution in the long run is to evolve reconfigurable 
architectures rather than map a specific version into a 
VLSI implementation. The final choice will of course 
depend on issues such as volume of production, usage 
of the system (e.g. small number of large servers vs. 
a large number of plug-in cards), and the needs of the 
user community (a hardware system will have a larger 
vocabulary and a smaller WER than a software only 
system, but some version of the latter may be deemed 
"good enough" at some point). 

4. Mapping the Architecture 
to Configurable Logic 

One of the main targets of the architecture implementa­
tion was the flexibility and the design time. Those two 
facts, led to the use of configurable logic. The design 
was done using the ALTERA MAX+plus II ver. 9.0.1 
CAD Tool for the design [19], and ALTERA FPGAs 
for the hardware implementation [20]. The architecture 
was described mainly in VHDL [21] and schematic 
capture. 

4.1. Design afthe Architecture 

For this design two devices were selected: one for 
the SDRAM controller and one for the rest of the 
system. For the SDRAM controller a fast device 
(EPM7128SLC84-7) from the MAX7000S family of 
ALTERA EPLDs was selected [20, 22]. This solution 
was given because of the small propagation delays be­
tween inputs and outputs (7 nsec). For the rest of the 

Table 6. Signal pins of the main FPGA of the system. 

Signal name Type of signal Number of pins 

Data Input 128 

Control Input 5 

Data Output 80 

Control Output 8 

TOTAL InputJoutput 221 

Table 7. Use of FPGA resources. 

Kind ofresource EPFIOK50EFC484-1 Used by architecture 

InputJoutput pins 248 215 

Logic cells 2880 2507 

system, which is the main architecture, the FLEX 1 OKE 
was selected. Tables 6 and 7, below, show the numbers 
of inputs and outputs the architecture uses. The control 
inputs come mainly from the SDRAM controller. 

This design fits in a single EPFIOK50EFC484-1 de­
vice. This device has 248 110 pins and 2880 logic cells. 
The architecture implemented uses the resources of­
fered by this device efficiently, as shown in Table 7. 
As this table shows this implementation gives a fine 
utilization of the resources offered by the specific de­
vice. The operation frequency of the design is 70,92 
Mhz. This leads to a system that can run with a clock 
of 66 Mhz (the PCI clock). For the design parameters 
given in Section 2, the processing time for a set of 
[S, X t ], expressed in time and not in cycles, and for 
various numbers of active states is shown in Table 5. 

The SDRAM is a single 64Mbyte DIMM module, 
organized internally as four interleaved banks, its data­
path is 64 bits (thus the depth is 8Mwords) [23, 24]. 
The speed grade we have used is 100 MHz, and the 
part is exactly as used in personal computers. The 
SRAM module has been designed out of eight 64 K x 8 
SRAM chips, organized as four independently address­
able banks of 64K x 16 bits each. In order to have the 
required speed, the chips that were used are 15 nsec 
SOJ package parts [25]. If we consider the usage of re­
sources, the SRAM is 100% used, whereas the SDRAM 
is used 51 % (this is the percentage of locations that 
contain useful information). 

The statistical analysis of the recognizer imple­
mented only in software, with a sample 100 recog­
nized sentences, shows that with a sampling rate of 
100 Hz, which gives one observation vector every 
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Table 8. SDRAM requirements on board. 

Number of State memory 
Model states (MBytes) 

ATIS 10,872 0.7 

Nuance v6.0 36,000 2.3 

Nuance v6.2 
Single pass 42,000 2.7 

Two pass 28,000 1.8 

10 msec, the average number of active genones is 522, 
and the average number of active states per genone 
is 10. From those facts the average time available 
for the computation and I/O for one set of [S, XI] is 
10 msec/522= 19.15 JIsec. The same computation 
can be done in the new architecture, described in this 
paper, in 3.32 fJsec, leaving more than 15 fJsec for 
system 110. In this case the PCI passes to the copro­
cessor system seven 64-bit words and receives three 
64-bit words. Even in the worst case scenario with all 
57 states being used in each case, the processing time 
for the new architecture would become 9.02 fJsec for 
processing. Given that the recognizer front end pro­
duces 100 observations/second for each channel, the 
above figures mean that under worst case conditions we 
have the capacity for two real-time channels and in a 
typical case we have the capacity for six real-time chan­
nels. By contrast, a 266 Pentium II PC has the capacity 
(for this part alone) for 0.7 real-time channels for the 
typical case, whereas the worst case has not been mea­
sured because it has not been observed. Therefore, the 
architecture is roughly 9 times faster than a personal 
computer for the corresponding part of the load, and 
given that I/O is done at 66 MHz (whereas the present 
design can operate at 71 MHz). 

The number of real-time channels, two to six for this 
specific design, are useful for large server-type appli­
cations. Indeed, because the architecture is oblivious 
to the original source of the computation, can be par­
titioned among channels as long as the data are sent in 
sets of one observation and its active state space. 

4.2. The Effect of the Application 
on the SDRAM Subsystem 

In order to see the effects of alternative models on the 
SDRAM requirements of the system we have tabulated 
these requirements for several real-world applications: 
ATIS is the model that was used for the development 
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Number of 
genones 

1,105 

829 

926 

1,774 

Genone memory 
(MBytes) 

32.3 

24.9 

27.8 

53.2 

Total memory 
(MBytes) 

64 

32 

64 

64 

of the architecture. In addition, we present data for a 
commercial system, namely, that of Nuance, and for 
versions 6.0 and 6.2 (both single and two pass). We 
note that all of the above systems can employ the exist­
ing 64 Mbytes of SDRAM, whereas the Nuance v6.0 
system could very well fit in a board with 32 MBytes 
ofSDRAM. 

The calculations for the states were made as follows: 
each state has the same number of bytes. Specifically, 
each state has 32 Gaussians, and the mixture weight 
for each of them is represented by 2 bytes, meaning 
that each state requires 64 bytes. 

Similarly, each genone has 32 Guassians and each 
Guassian is partitioned into 15 subvectors which are 
represented by 5-bits each, thereby requiring a proba­
bility vectoroflength 32 (of2 bytes each, i.e. 64 bytes). 
The total product of these terms in 32 x 15 x 32 x 2 = 
30 KBytes. Therefore the total memory requirements 
can be determined by multiplying the number of 
genones by 30 KBytes and the number of states by 
64 bytes. Whereas this total represents actual memory 
requirements, efficient encoding is not always possible, 
and as result, even in cases which would nominally fit in 
32 MBytes of SDRAM, 64 MBytes might be required. 
A similar situation occurs with the ATIS application 
which requires slightly over 32 MBytes, thus necessi­
tating 64 MBytes only 51 % of which are used. 

This memory calculation can also be used to demon­
strate why reconfigurability of the system offers ad­
vantages which a VLSI implementation cannot have. 
Specifically, each time that we change the genones and 
the states, the address bits for these change too, which 
means that memory usage is tailored to the specific 
characteristics of the model which is used. Referring 
again to Fig. 4 we see how the address is formed accord­
ing to where the genones and the states are. The ability 
to alter the organization of the SDRAM subsystem with 
a corresponding change of the address generation logic 
effictively mandates reconfigurability in the system. 
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4.3. PCI and User Application Performance Issues 

In the design of a real time system, issues like the bus 
performance and application software performance are 
of major importance. It is noteworthy that in order to 
achieve real-time performance at the human scale, all 
processing has to be done on the average for the recog­
nition of a sentence at the observation rate of 100 sam­
ples/sec, and the processing of an individual observa­
tion may deviate somewhat from this rate. It is thus 
permissible to use the average figure of 522 genones 
per observation in our calculation of I/O and appli­
cation level processing (it turns out that we can meet 
worst case figure too, but this has not been experi­
mentally observed). For each of these observations we 
have three elements of computation: the preprocess­
ing, the search, and the grammar processing. As shown 
in Fig. 1, the search dominates the load with roughly 
87% of the load in the case of the least error rate, and 
this is the aspect which gets sped up by our engine. 
All genones per observation are known and can be 
passed on to the coprocessor. Likewise, the results 
from each [5, XI] calculation can be buffered before 
they are passed to the processor. 

For the remaining analysis we have used the experi­
mental data on PCI bus performance measurments, 
which were reported by Moll and Shand [14], and 
specifically results derived from a 200 MHz Pentium 
Pro system with 32-bit 33 MHz PCI bus. We consider 
these figures to be very conservative in order to demon­
strate that the real time performance of our system is 
not limited by I/O operations. 

During a 10 msec period we write to the copro­
cessor 522 x 10 x 7 x 8 bytes = 292,320 bytes. The 
time needed to write all genones and active states 
through the PCI is calculated with the minimum mea­
sured DMA rate reported by Moll and Shand [14] of 
129 Mbytes/sec. Although the initial latency is not re­
ported, a conservative minimum is 100 fLsec which cor­
responds to two system calls plus the time to buffer the 
I/O (in general, writes to the PCI are much faster than 
reads). For the 292,320 bytes passed to the coproces­
sor we thus need 2.16 msec transfer time and 0.1 msec 
initial latency, or 2.26 msec total time. The process­
ing time for all these active states is 522 x 3.32 fLsec = 
1.73 msec. 

The cost of a PCI bus transaction (PCI card inter­
rupting and passing data to user process) has been 
experimentally determined by Moll and Shand [14] 
to be 30 fLsec for the interrupt service routine and 

less than 200 fLsec for the user thread in 98% of the 
cases in loaded systems for personal computers with 
200 MHz Pentium Pro processors and 33 MHz 32-bit 
PCI bus. Therefore we consider these figures to be con­
servative. The same authors also report a minimum of 
110 Mbytes/sec read rate (using DMA), which means 
that in the average case of 522 genones with an average 
number of 10 states each, and for which we return three 
64-bit words (a total of 125,280 bytes) would require (in 
addition to the 200 fLsec latency) 1.09 msec, bringing 
the total read time (including the interrupt overhead) to 
1.29 msec. 

From the above figures we conservatively estimate 
that with a 33 MHz 32-bit PCI bus and a 200 MHz 
Pentium Pro processor we need 2.26 msec + 1.73 msec 
+ 1.29 msec = 5.28 msec. From Fig. 1 we see that even 
without the I/O cost the same aspect of the computation 
would take 0.87 x 2.2 x 10 msec = 19.1 msec (here, 
the 2.2 factor over the required real time performance is 
applied on the 10 msec time budget for the calculation). 

We now need to see what is the grammar and front 
end processing time budget. Again from Fig. 1 we see 
that the aspect which we now perform on software is 
0.13 x 2.2 x 10 msec =2.86 msec for the grammar 
processing. The front end processing does not need 
to enter into this computation because it does not de­
pend on the results of the coprocessor, and thus can 
be performed in parallel with the coprocessor per­
forming the search. Thus, the critical path of the cal­
culation, namely the search and the grammar pro­
cessing require (under very conservative calculations) 
5.28 msec + 2.86 msec = 8.14 msec which is within 
the 10 msec time budget for real time performance. 

The real time performance estimates were calculated 
using the simplistic model of downloading all active 
genones and states, then doing all the calculations, then 
uploading all results, and after all results are loaded do 
the grammar processing. We do not suggest that this is 
by any means a desirable way to operate the coproces­
sor, because it makes poor usage of its resources, it ne­
cessitates large I/O buffers, and it uses poorly the CPU. 
In practice, the granularity ofthe I/O will be determined 
by actual system performance. It is clear that the data 
passed back and forth has to be for more than one state, 
since the 200 fLsec interrupt-to-application process la­
tency of the PCI bus alone is roughly ten times the 
19.15 fLsec processing window of one state. Given that 
each genone has a different number of active states as­
socitated with it, it is desirable to send to the coproces­
sor a fixed number of states at a time. The only reason 
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why we perfonned the calculations in this manner was 
to demonstrate that even with conservative technology 
the real time requirements can be met with plenty 
of time left for the PC to run other applications too. 

5. Present Status and Future Work 

The present status of this project is the construc­
tion of an actual engine to perfonn DMHMM based 
continuous-speech recognition. Due to the difficulty in 
the acquisition of miscellaneous components (mostly, 
BGA sockets), the construction is done with more con­
servative technology, i.e. with multiple 84-pin PLCC 
packaged FPGA's instead of the larger model described 
in this paper. The design was readily partitioned among 
the smaller FPGA's by taking slices of the computa­
tion with the finite state machine controlling them into 
single FPGA's. The corresponding perfonnance degra­
dation of the system (as determined by post place and 
route times and calculated inter-chip communication 
delays) makes it appropriate for 33 MHz I/O rather than 
66 MHz I/O, which means that even the smaller system 
will be able to handle multiple channels in real time. 
A small prototype board to prove the concept was con­
structed with one 84-pin EPF10K lOLC84-4 ALTERA 
FPGA. On that board, all portions of the datapath and 
their corresponding control structures were tested, one 
at a time. The tests were performed at the full 33 MHz 
speed of the scaled down system, and all subsystems 
were found to be fully functional. 

Due to the difficulty in acquiring PCI design cores 
for direct inferfacing to the PCI bus, high speed I/O 
will be performed with the COMPAQ Labs PAMETTE 
board, a copy of which has already been obtained on 
loan. One issue which has been studied but needs to 
be evaluated experimentally too is the I/O speed of the 
host system. Because speech recognition is tolerant to 
some initial latency (even a few tenths of a second), 
it is the bandwidth that will be of importance rather 
than the latency in accessing the coprocessor board, 
and with burst mode in PCI this is expected to be no 
problem. 

In conclusion, an architecture has been presented 
such that with a single board system we can achieve 
multichannel real-time continuous speech recognition 
using the DMHMM algorithm. Such an architecture 
can be adopted to specific solutions of the DMHMM 
algorithm for different state space and processing con­
straints by simple design changes and reconfiguration 
of the computational core FPGA. This architecture can 
operate as a coprocessor for a personal computer which 
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will perform the sampling, Fourier analysis, and gram­
mar extraction using roughly half of its processing 
power. It is notable that even high-end PC's fully de­
voted to the task cannot perform real-time DMHMM 
continuous-speech recognition, whereas the improve­
ment gained by using faster processors is not commen­
surate to the clock speed improvement (see previous 
section). 

Following the implementation of this architecture, 
the system will be reconfigured so that it will be evalu­
ated for a variety of state assignments, vocabulary sizes, 
and precision of computation, whereas a larger sys­
tem might be implemented as a large server for multi­
channel applications. 
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Note 

I. The Viterbi algorithm is an instance of Dynamic Programming 
that is also used in communications for the decoding of convolu­
tional codes. 
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The CAM-Brain Machine (CBM): Real Time Evolution and Update 
of a 75 Million Neuron FPGA-Based Artificial Brain 
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Abstract. This article introduces ATR's "CAM-Brain Machine" (CBM), an FPGA based piece of hardware which 
implements a genetic algorithm (GA) to evolve a cellular automata (CA) based neural network circuit module, of 
approximately 1,000 neurons, in about a second, i.e. a complete run of a GA, with 10,000 s of circuit growths 
and performance evaluations. Up to 65,000 of these modules, each of which is evolved with a humanly specified 
function, can be downloaded into a large RAM space, and interconnected according to humanly specified artificial 
brain architectures. This RAM, containing an artificial brain with up to 75 million neurons, is then updated by 
the CBM at a rate of 130 billion CA cells per second. Such speeds should enable real time control of robots and 
hopefully the birth of a new research field that we call "brain building". The first such artificial brain, to be built by 
ATR starting in 2000, will be used to control the behaviors of a life sized robot kitten called "Robokoneko". 

1. Introduction 

This article introduces ATR's "CAM-Brain Machine" 
(CBM) [1], a Xilinx XC6264 FPGA [2] based piece of 
hardware that is used to evolve 3D cellular automata 
based neural network [3] circuit modules at electronic 
speeds, that is in about a second per module. 65,000 
of these modules can then be assembled into a large 
RAM space according to humanly specified artificial 
brain architectures. This RAM is updated by the CBM 
fast enough (130 billion CA cell updates/sec) for real 
time control of robots. ATR's CBM should be built and 
delivered by the fourth quarter of 1999. 

The CBM is the essential tool in ATR's "Artificial 
Brain (CAM-Brain) Project" [4, 5], which at the time of 
writing (Summer 1999), has been running for 6.5 years. 
Although the focus of this article is on the functional 
principles and design of the CBM, a certain background 
needs to be provided so that the motivation for its con­
struction is understood. 

The basic (and rather ambitious) aim of the CAM­
Brain Project as first stated in 1993 was to build an 

artificial brain containing a billion artificial neurons by 
the year 2001. The actual figure in 1999 will be max­
imum 75 million, but the billion figure is still reach­
able if we really want. The ATR Brain Builder team 
is hoping that the CBM will revolutionize the field of 
neural networks (by creating neural systems with tens 
of millions of artificial neurons, rather than just the 
conventional tens to hundreds), and will create a new 
research field called "Brain Building". The CBM will 
make practical the creation of artificial brains, which 
are defined to be assemblages of tens of thousands 
(and higher magnitudes) of evolved neural net mod­
ules into humanly defined artificial brain architectures. 
An artificial brain will consist of a large RAM memory 
space, into which individual CA modules are down­
loaded once they have been evolved. The CA cells in 
this RAM will be updated by the CBM fast enough 
for real time control of a robot kitten "Robokoneko" 
(Japanese for "robot kitten"). 

Since the neural net model used to fit into state-of­
the-art evolvable electronics has to be simple, the sig­
naling states of the neural net were chosen to be 1 bit 
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binary. We label this model "CoDi-IBit" [6] (CoDi = 
Collect & Distribute). This article will summarize the 
principles of this 1 bit neural signaling model, since the 
CBM is an electronic implementation of it. We realize 
that limiting ourselves to only 1 bit per neural signal (to 
fit into the Xilinx XC6264 chips), is rather severe (al­
though nature uses a 1 bit signal scheme with its evoked 
potentials, i.e. the spikes in the axons), so it is possible 
that future versions of the CBM may use multi bit neu­
ral signaling to obtain higher "evolvability" of neural 
module functionality. 

The remainder of this article is structured as follows. 
Section 2 gives an explanation ofthe "CoDi-lEit" neu­
ral net model that is implemented by the CAM-Brain 
Machine (CBM). Section 3 discusses briefly the repre­
sentation that our team has chosen to interpret the 1 bit 
signals which are input to and output from the CoDi 
modules (we call this representation "SIIC" = Spike In­
terval Information Coding). This representation is im­
portant because the CBM measures the "fitness" (i.e. 
the performance measure of the evolving circuit) us­
ing analog output values obtained by convolving the 
binary outputs of the module with a digitized con­
volution function. Section 4 shows how analog time­
dependent signals can be converted into spike trains (bit 
strings of 0 sand 1 s) to be input into CoDi modules 
using the so-called "HSA" (Hough Spiker Algorithm). 
The SIIC (spiketrain to analog signal conversion) and 
the HSA (analog signal to spiketrain conversion) al­
low users (evolutionary engineers) to think entirely in 
analog terms when specifying input signals and tar­
get (desired) output signals, which is much easier than 
thinking in terms of spike intervals (the number of 0 s 
between the 1 s). This analog thinking for evolution­
ary engineers simplifies the evolution of modules, and 
overcomes the limitation to some extent of the 1 bit 
binary signaling of the CoDi modules (and hence the 
CBM). Section 5, the heart of this article, provides a 
detailed summary ofCBM design and functionality, us­
ing the ideas already discussed in the earlier sections. 
Since an artificial brain without a body (such as a robot) 
seems rather pointless, Section 6 introduces early work 
on the behavioral repertoire and mechanical design of 
the kitten robot "Robokoneko" that our artificial brain 
will control. Section 7 presents a (software simulated) 
sample of what evolved CoDi modules will be able 
to do, once the CBM is complete and delivered. Our 
Brain Builder team will then be evolving thousands 
of such modules. Section 8 discusses ideas for inter­
esting future modules and multi-module systems to be 
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evolved. Section 9 talks about some related work, and 
Section 10 concludes. 

2. The CoDi-lBit Neural Network Model 

The CBM implements the so called "CoDi" (i.e. Col­
lect and Distribute) [6] cellular automata based neural 
network model. It is a simplified form of an ear­
lier model developed at ATR (Kyoto, Japan) in the 
summer of 1996, with two goals in mind. One was 
to make neural network functioning much simpler and 
more compact compared to the original ATR model, 
so as to achieve considerably faster evolution runs on 
the CAM-8 (Cellular Automata Machine), a dedicated 
hardware tool developed at Massachusetts Institute of 
Technology in 1989. 

In order to evolve one neural module, a popula­
tion of 30-100 modules is run through a genetic al­
gorithm [7] for 200-600 generations, resulting in up 
to 60,000 different module evaluations. Each module 
evaluation consists of-firstly, growing a new set of ax­
onic and dendritic trees, guided by the module's chro­
mosome (which provide the growth instructions for the 
trees). These trees interconnect several hundred neu­
rons in the 3D cellular automata space of 13,824 cells 
(24 x 24 x 24). Evaluation is continued by sending 
spiketrains to the module through its afferent axons 
(external connections) to evaluate its performance (fit­
ness) by looking at the outgoing spiketrains. This typ­
ically requires up to 1000 update cycles for all the cells 
in the module. 

On the MIT CAM-8 machine, it takes up to 69 min­
utes to go through 829 billion cell updates needed to 
evolve a single neural module, as described above. 
A simple "insect-like" artificial brain has hundreds of 
thousands of neurons arranged into ten thousand mod­
ules. It would take 500 days (running 24 hours a day) 
to finish the computations. 

Another limitation was apparent in the full brain 
simulation mode, involving thousands of modules in­
terconnected together. For a 1 O,OOO-module brain, the 
CAM-8 is capable of updating every module at the rate 
of one update cycle 1.4 times a second. However, for 
real time control of a robotic device, an update rate 
of 50-100 cycles per module, 10-20 times a second 
is needed. So, the second goal was to have a model 
which would be portable into electronic hardware to 
eventually design a machine capable of accelerating 
both brain evolution and brain simulation by a factor 
of 500 compared to CAM-8. 
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The CoDi model operates as a 3D cellular automata 
(CA). Each cell is a cube which has six neighbor cells, 
one for each of its faces. By loading a different phe­
notype code into a cell, it can be reconfigured to func­
tion as a neuron, an axon, or a dendrite. A neuron is a 
brain cell. An axon is the branching of a neuron which 
carries a neural signal away from the neuron to other 
neurons. A dendrite is the branching of the neuron 
which carries a neural signal towards the neuron from 
other neurons. Neurons are configurable on a coarser 
grid, namely one per block of 2 x 2 x 3 CA cells. 
Cells are interconnected with bidirectional I-bit buses 
and assembled into 3D modules of 13,824 cells 
(24 x24 x 24). 

Modules are further interconnected with 188 I-bit 
connections to function together as an artificial brain. 
Each module can receive signals from up to 188 other 
modules and send its output signals to up to 64,640 
modules. These intermodular connections are virtual 
and implemented as a cross-reference list in a module 
interconnection memory (see below). 

In a neuron cell, five (of its six) connections are 
dendritic inputs, and one is an axonic output. A 4-bit 
accumulator sums incoming signals and fires an output 
signal when a threshold is exceeded. Each of the in­
puts can perform an inhibitory or an excitatory function 
(depending on the neuron's chromosome) and either 
adds to or subtracts from the accumulator. The neuron 
cell's output can be oriented in 6 different ways in the 
3D space. A dendrite cell also has five inputs and one 
output, to collect signals from other cells. The incom­
ing signals are passed to the output with an 5-bit XOR 
function. An axon cell is the opposite of a dendrite. 
It has 1 input and 5 outputs, and distributes signals to 
its neighbors. The "Collect and Distribute" mechanism 
of this neural model is reflected in its name "CoDi". 
Blank cells perform no function in an evolved neural 
network. They are used to grow new sets of dendritic 
and axonic trees during the evolution mode. 

Before the growth begins, the module space consists 
of blank cells. Each cell is seeded with a 6-bit chromo­
some. The chromosome will guide the local direction 
of the dendritic and axonic tree growth. Six bits serve as 
a mask to encode different growth instructions, such as 
grow straight, tum left, split into three branches, block 
growth, T-split up and down etc. Before the growth 
phase starts, some cells are seeded as neurons under 
genetic control. As the growth starts, each neuron con­
tinuously sends growth signals to the surrounding blank 
cells, alternating between "grow dendrite" (sent in the 
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direction of future dendritic inputs) and "grow axon" 
(sent towards the future axonic output). A blank cell 
which receives a growth signal becomes a dendrite cell, 
or an axon cell, and further propagates the growth sig­
nal, being continuously sent by the root neuron, to other 
blank cells. The direction of the propagation is guided 
by the 6-bit growth instruction, described above. This 
mechanism grows a complex 3D system of branch­
ing dendritic and axonic trees, with each tree hav­
ing one neuron cell associated with it. The trees can 
conduct signals between the neurons to perform com­
plex spatio-temporal functions. The end-product of the 
growth phase is a phenotype bitstring which encodes 
the type and spatial orientation of each cell. 

Thus there are two main phases-neural net growth 
and neural net signaling. In the CoDi-l Bit model, the 
signal states contain only 1 bit. With an 8 bit signal for 
example (as was the case in the old CAM-Brain Project 
model) one simply looks at the signal state to see the 
signal value. With 1 bit signaling, one needs to choose 
an interpretation of the signals, e.g. frequency based 
(count the number of spikes (l s) in a given time), or 
interpret the spacing between the spikes as containing 
information etc. These interpretation issues will be 
taken up in the next section. 

3. The Spike Interval Information Coding 
Representation, "SIIC" 

3.1. Choosing a Representation 
for the CoDi-1 Bit Signaling 

The constraints imposed by state-of-the-art program­
mable (evolvable) FPGAs in 1998 were such that the 
CA based model (the CoDi model) had to be very 
simple in order to be implementable within those con­
straints. Consequently, the signaling states in the model 
were made to contain only 1 bit of information (as hap­
pens in nature's "binary" spike trains). The problem 
then arose as to interpretation. How were we to assign 
meaning to the binary pulse streams (i.e. the clocked 
sequences of 0 sand 1 s which are a neural net module's 
inputs and outputs? We tried various ideas such as a 
frequency based interpretation, i.e. count the number 
of pulses (i.e. 1 s) in a given time window (of N clock 
cycles). But this was thought to be too slow. In an ar­
tificial brain with tens of thousands of modules which 
may be vertically nested to a depth of 20 or more 
(where the outputs of a module in layer n get fed into a 
module in layer n + 1, where n may be as large as 
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Figure I. The convolution function used in the "SIIC" representa~ 
tion. 

20 or 30) then the cumulative delays may end up in a 
total response time of the robot kitten being too slow 
(e.g. if you wave your finger in front of its eye, it might 
react many seconds later). We wanted a representation 
that would deliver an integer or real valued number 
at each clock tick, the ultimate in speed. The first 
such representation we looked at we called "unary". 
If N neurons on an output surface are firing at a given 
clock tick, then the firing pattern represented the inte­
ger N, independently of where the outputs were coming 
from. We found this representation to be too stochastic, 
too jerky. Ultimately we chose a representation which 
convolves the binary pulse string with the convolution 
function shown in Fig. 1. We call this representation 
"SIIC" (Spike Interval Information Coding) which was 
inspired by [8]. 

This representation delivers a real valued output at 
each clock tick, thus converting a binary pulse string 
into an analog time dependent signal. Our team has 
already published several papers on the results of this 
convolution representation work [9]. Figure 2 shows 
the result of deconvolving an arbitrary analog curve 
(that is, converting an analog signal into a spike train 
(binary string) as explained in Section 4), and then 
convolving it back (i.e. converting a spike train into an 
analog signal) to the original analog curve. The smooth 
curve is the original curve, and the spikey curve is the 
result of the two conversions. The percentage errors 
obtained between the original curve and the result of 
the two conversions were only about 2%, so we thought 
these two conversions were very useful. Of course, it 
is one thing to have accurate conversions from analog 
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Figure 2. An analog (smooth) curve and its deconvolved/convolved 
approximation (jerky) curve. 

signals to spike trains and vice versa. It is another that 
a CoDi-lBit neural net module can evolve a spike train 
that when convolved can produce a desired analog out­
put. Figure 3 shows just such an example (of a target 
3 period sine curve) which evolved quite successfully, 
showing that the basic idea is sound. (The solid curve 
is the target curve, and the dashed curve is the evolved 
and convolved result. The actual spikes (i.e. the 1 s 
in the binary string output from the CoDi module) are 
shown beneath the curves.) Figure 4 shows two out­
puts of a "halver" circuit which was evolved to take a 
constant analog input (e.g. 600 or 400) and to output 
half its value (300 or 200). This case is a good exam­
ple of how an evolutionary engineer can think entirely 
in analog terms when evolving modules. The analog 
input is automatically converted to a spike train, which 
enters the neural net module, and the spike train output 
of the module get automatically converted to an analog 
signal whose values are compared with a target curve to 
evaluate the fitness (performance) of the evolving cir­
cuit. Further examples of evolved modules (although 
using only binary 1/0), are to be found in Section 7. 

3.2. The S/IC Convolution Algorithm 

The convolution algorithm we use takes the output 
spiketrain (a bit string of 0 sand 1 s), and runs the pulses 
(the 1 s) by the convolution function shown in the sim­
plified example below. The output at any given time t 
is defined as the sum of those samples of the convolu­
tion filter that have a 1 in the corresponding spiketrain 
positions. The example below should clarify what is 
meant by this. 
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Figure 4. Outputs of a halver circuit (with inputs 600 and 400) 

using fully analog I/O. 

Simplified Example. Convolve the spiketrain 
1101001 (where the left most bit is the earliest, the 
right most bit, the latest) using the convolution filter 
values {l 4 9 5 -2}. The spiketrain in this diagram 
moves from left to right across the convolution filter. 

Alternatively, one can view the convolution filter (win­
dow) moving across the spiketrain. The number to the 
right of the colon shows the value of the convolution 
sum at each time t. 

time-shifted spike train 1 0 0 1 0 1 1 
---> (moves left to right) 

convolution filter 1 4 9 5 -2 

1001011 
o 0 0 0 0 o t = -1 

1001011 
1 000 0 1 t = 0 

100 1 011 
140 0 0: 5 t = 1 

1001011 
o 4 9 0 0 : 13 t = 2 

1001011 
1 0 9 5 0 : 15 t = 3 

11 C) 
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1 o 0 101 1 
o 4 0 5 -2 7 t = 4 

1 o 0 1 0 1 
o 0 9 0 -2 7 t = 5 

100 1 0 
1 005 0 6 t = 6 

100 1 
o 4 0 0 -2 2 t = 7 

1 0 0 
009 0 0 9 t = 8 

1 0 
o 0 0 5 0 5 t = 9 

1 
o 0 0 0 -2 : -2 t = 10 

Hence, the time-dependent output ofthe convolution 
filter takes the values (0, 1, 5, 13, 15, 7, 7, 6, 2, 9, 
5, -2). This is a time varying analog signal, which is 
the desired result. 

4. The "Hough Spiker Algorithm" (HSA) 
for Deconvolution 

Section 3 above explained the use of the SHC (Spike In­
terval Information Coding) Representation which pro­
vides an efficient transformation of a spike train (string 
of bits) into a (clocked) time varying "analog" signal. 
We need this interpretation in order to interpret the 
spike train output from the CoDi modules to evalu­
ate their fitness values (by comparing the actual con­
verted analog output waveforms with user specified 
target waveforms). However, we also need the inverse 
process, namely, an algorithm which takes as input, 
a clocked (digitized, binary numbered) time varying 
"analog" signal, and outputs a spike train. This con­
version is needed as an interface between the mo­
tors/sensors of the robot bodies (e.g. a kitten robot) 
that the artificial brain controls, and the brain's CoDi 
modules. However, it is also very useful to users, i.e. 
evolutionary engineers to be able to think entirely in 
terms of analog signals (at both the inputs and outputs) 
rather than in abstract, visually unintelligible spike­
trains. This will make their task of evolving many CoDi 
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modules much easier. We therefore present next an al­
gorithm which is the opposite of the SHC, namely one 
which takes as input, a time varying analog signal, and 
outputs a spiketrain, which if later is convolved with 
the SHC convolution filter, should result in the original 
analog signal. 

A brief description of the algorithm used to gener­
ate a spiketrain from a time varying analog signal is 
now presented. It is called the "Hough Spiker Algo­
rithm" (HSA) and can be viewed as the inverse of the 
convolution algorithm described above in Section 3. 

To give an intuitive feel for this deconvolution algo­
rithm, consider a spiketrain consisting of a single pulse 
(aliOs with one 1). When this pulse passes through 
the convolution function window, it adds each value of 
the convolution function to the output in tum. 

A single pulse: (100000... --+ t = +00) will be 
convolved with the convolution function expressed as 
a function of time. At t = 0 its value will be the first 
value of the convolution filter, at t = I its value will 
be the second value of the convolution filter, etc. Just 
as a particular spiketrain is a series of spikes with time 
delays between them, so too the convolved spiketrain 
will be the sum of the convolution filters, with (pos­
sibly) time delays between them. At each clock tick 
when there is a spike, add the convolution filter to the 
output. If there is no spike, just shift the time offset 
and repeat. 

The same example. 

spike train 110 100 1 
convolution filter 1 4 9 5 -2 

t -> 0 1 2 3 4 5 6 7 8 9 10 
out: 

1 1 4 9 5 -2 
1 1 4 9 5 -2 
0 0 0 0 0 0 
1 1 4 9 5 -2 
0 0 0 0 0 0 
0 0 0 0 0 0 
1 1 4 9 5 -2 

-----------------------------
1 5 13 15 7 7 6 2 9 5 -2 

In the HSA deconvolution algorithm, we take advan­
tage of this summation, and in effect do the reverse, 
a kind of progressive subtraction of the convolution 
function. If at a given clock tick, the values of the 
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convolution function are less than the analog values 
at the corresponding positions, then subtract the con­
volution function values from the analog values. The 
justification for this is that for the analog values to 
be greater than the convolution values, implies that to 
generate the analog signal values at that clock tick, the 
CoDi module must have fired at that moment, and this 
firing contributed the set of convolution values to the 
analog output. Once one has determined that at that 
clock tick, there should be a spike, one subtracts the 
convolution function's values, so that a similar pro­
cess can be undertaken at the next clock tick. For ex­
ample, to deconvolve the convolved output (using the 
same value of the convolution function as in the simple 
example of the previous section. 

1 5 13 15 7 7 6 2 9 

CAM-Brain Machine (CBM) 247 

The resulting analog output (the jerky curve) should be 
very close to the original solid line as Fig. 2 shows it to 
be. The HSA seems to work well when the values of 
the waveforms are large and do not take values close 
to zero, and do not change too quickly relative to the 
time width of the convolution filter window. It may 
be possible to simply add a constant value to incoming 
analog signals before spiking them and to ensure that 
the analog signal does not change too rapidly. 

Note however, that the HSA deconvolution algo­
rithm was only discovered fairly recently, so the neu­
ral net module evolution that is discussed in Section 7 
below, does not use it. The IIOs to these modules as 
specified by the evolutionary engineer were in binary, 
not analog. 

5 -2 
compare: 1 4 9 5 -2 conv.vals<analog sig vals, so spike: 1 

0 1 4 10 9 7 6 2 9 
compare: 1 4 9 5 -2 

0 0 0 1 4 9 6 2 9 
compare: 1 4 9 5 -2 

0 0 0 1 4 9 6 2 9 
compare: 1 4 9 5 -2 

0 0 0 0 0 0 1 4 9 
compare: 1 4 9 5 -2 

0 0 0 0 0 0 1 4 

compare: 1 4 9 

0 0 0 0 0 0 1 4 
compare: 1 4 

0 0 0 0 0 0 0 0 

It is assumed that spiking will irreversibly raise the 
value of the convolved output. If the convolution filter 
value at a given clock tick is less than that of the tar­
get waveform, spiking will bring the two values closer 
together. If the waveform value is still too low after a 
spike has occurred, a near future spike will bring the 
two closer together. 

Figure 5 shows an example of an HSA spiketrain 
output. It is the spike train corresponding to Fig. 2 in 
fact. The original input analog signal is the solid line 
in Fig. 2. The spiketrain resulting from each analog 
input is sent into the SHC convolver (shown in Fig. 1). 

9 
5 
9 
9 
0 

5 -2 subtract (time++ ) 
less, so spike: 11 

5 -2 subtract (time++) 
not less, so no spike: 110 

5 -2 (time++ ) 
less, so spike: 1101 

5 -2 subtract (time++) 
not less: 11010 

5 -2 (time++) 
-2 not less: 110100 

5 -2 (time++) 
5 -2 less, so spike: 1101001 
0 0 subtract (time++ ) 

5. The CAM-Brain Machine (CBM) 

5.1. CBM Overview 

The CAM-Brain Machine (CAM stands for Cellular 
Automata Machine) is a research tool for the creation of 
artificial brains. An original set of ideas for the CAM­
Brain project was developed by Dr. Hugo de Garis 
at the Evolutionary Systems Department of ATR HIP 
(Kyoto, Japan), and is currently being implemented as 

( time ---> ) 

111100010001101111110100010111110110100010101110100100010011010100 
100010101010100101001010110001101010011001101011010101011101110101101 

Figure 5. The spiketrain output of Fig. 2, as generated by the Hough Spiker Algorithm (HSA). 
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a dedicated research tool by Genobyte, Inc. (Boulder, 
Colorado). Genobyte is licensed by ATR International 
and Japan's Key Technologies Center to manufacture 
and sell CBMs to third parties. 

An artificial brain, supported by the CBM, consists 
of up to 64,640 neural modules, each module populated 
with up to 1,152 neurons, a total of 74.5 million neu­
rons. Within each neural module, neurons are densely 
interconnected with branching dendritic and axonic 
trees in a three-dimensional space, forming an arbitrar­
ily complex interconnection topology. A neural module 
can receive afferent axons from up to 188 other modules 
of the brain, with each axon being capable of multiple 
branching in three dimensions, forming hundreds of 
connections with dendritic branches inside the mod­
ule. Each module sends efferent axon branches to up 
to 64,640 other modules. 

A critical part of the CBM approach is that the de­
tailed dendritic/axonal tree structure of the neural mod­
ules is not "manually designed" or "engineered" to 
perform a specific brain function, but rather evolved 
directly in hardware, using genetic algorithms, in the 
spirit of the growing research field of evolvable hard­
ware [9-12]. 

Genetic algorithms operate on a population of chro­
mosomes, which represent neural networks of different 
topologies and functionalities. Better performers for a 
particular function are selected and further reproduced 
using chromosome recombination and mutation. After 
hundreds of generations, this approach produces very 
complex neural networks with a desired functionality. 
The evolutionary approach can create a complex func­
tionality without any a priori knowledge about how to 
achieve it, as long as the desired input/output function 
is known. 

5.2. CBM Architecture 

We begin the description of the CBM with a brief 
overview, followed by several paragraphs giving a 
somewhat greater level of detail. These paragraphs 
also attempt to justify to some extent the architectural 
decisions we made. Note that we have compromised 
here between a need for corporate secrecy (Genobyte, 
Michael Korkin's company [13], has a licensing agree­
ment with ATR to build and sell CBMs, hopefully 
free from imitators for several years) and academic 
openness, so the description below is somewhat lacking 
in critical details. 
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In the CBM we have implemented what is called 
"function-level" evolvable hardware, as opposed to 
"gate-level" evolvable hardware, which directly op­
erates on a sea of Boolean gates. Our functions take 
the form of cellular automata cells, which are manu­
ally designed and configured in Xilinx XC6264 FPGA 
chips. (Note that Xilinx removed the XC6200 family 
of chips from the market. We managed to salvage the 
few remaining XC6264 chips from Xilinx, enough to 
build approximately 8 CAM-Brain Machines (CBM) 
in the next few years.) Each of these cellular automata 
cells contains a 6-bit register and some additional logic, 
which allow it to exchange signals with its neighbor­
ing cells. The contents of the register is the subject 
of evolution. So, instead of using FPGA configuration 
memory space to instantiate different circuits, our de­
sign utilizes our own "configuration" space made up 
of multiple 6-bit registers in CA cells, which are pre­
loaded into the FPGAs. In fact, the CBM design uses 
three different cell functions for three different phases 
of operation (i.e. growth, signaling, and genetic), so we 
reconfigure the entire FPGA chips multiple times in the 
process of cycling through the CBM phases. A high re­
configuration speed and direct access to the user-level 
registers in the XC6264 chips allow us to achieve high 
overall throughput. 

The following provides further details of our CBM 
implementation. 

The CBM architecture is designed around the ar­
chitectural features of Xilinx's XC6264 FPGA chips. 
These SRAM-based FPGAs allow rapid reconfigura­
tion logic at the rate of 60 Mbytes/s. A full CBM array 
of n FPGAs forms a cellular automata cubic space of 
24 x 24 x 24 cells. Each FPGA holds a subspace of 
8 x 6 x 4 CA cells, a total of 192. These FPGAs 
are further interconnected to provide a continuous, un­
interrupted space. Each FPGA has 208 bidirectional 
connections with its neighboring FPGAs in a three­
dimensional logical space. Each FPGA is located on 
a separate PCB, which also carries a tightly coupled 
16 Mbyte DRAM SIMM and control logic CPLD. 
Interconnections are made via a large backplane panel 
carrying alln FPGA module PCBs. The cellular space 
is wrapped around all three axes of the CA cube, form­
ing a toroidal cube. All n FPGA functions are accom­
plished in parallel for the complete array under central 
control, while each FPGA has its own data to work with 
in its own 16 Mbytes memory space. Thus, the CBM 
architecture is of the SIMD (single instruction multiple 
data) type. 
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The FPGA array is time shared between multiple 
neural modules during an evolution run, or during brain 
run mode, by rapid instantiation of each module for a 
period of 12 microseconds, during which time the CA 
space is clocked 96 times at 9.47 MHz. At the end 
of this period, the status of the cells is saved in the 16 
Mbytes of DRAM, while the next module configuration 
is uploaded into the CA space from the DRAM. The 
resultant cellular update rate in the CBM's array of 72 
FPGAs is on the order of 114 billion cells/second. 

Each CA cell contains function logic and control reg­
isters which determine its operation. A cell typically 
occupies a rectangular FPGA subspace of 64 fine-grain 
function units, and a control register typically contains 
7 to 35 bits. Cell registers can be written orread through 
a 32-bit FPGA data interface in the same manner as 
the FPGA configuration space is accessed, which is a 
distinctive feature of the XC6264. Cells are intercon­
nected inside the FPGA with their neighboring cells 
using internal routing resources. Those cells which 
form the external surface of the CA subspace connect 
to cells inside the neighboring FPGAs in the array, 
a total of 208 connections. All inter-chip connections 
in the CBM have an open-drain configuration with ex­
ternal pull-ups to protect them from potential damage 
resulting from certain configuration patterns in the con­
nected CA cells belonging to different FPGAs. 

Each CA cell's internal control registers are imple­
mented as dual pipeline registers. The first stage is used 
to upload new bitstrings into all 192 cells in an FPGA 
through the 32-bit data interface, while the second stage 
holds the current cell configuration of the functioning 
cellular automata space. The first stage register's con­
tents can be loaded into the second stage register for 
all cells in parallel using a global signal. This accom­
plishes complete CA space reconfiguration in a matter 
of nanoseconds as well as simultaneous execution of 
the CA states with a background reconfiguration for the 
next neural module instantiation. Thus, the hardware 
core of the CBM is continuously utilized without any 
considerable idle time. 

For each of the three operational phases of the CBM, 
during every generation of a genetic algorithm (growth 
phase, signal phase, genetic phase), the full array of 
the 72 FPGAs is rapidly reconfigured with a com­
pletely different set ofCA cell functions. In the growth 
phase, the CA cells perform a network growth algo­
rithm, while their control registers are uploaded with 
the neural module's chromosomes. The result of the 
growth phase is the neural module phenotype to be 
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saved at the end of the growth phase. The phenotype 
is further used to configure the signal phase cells dur­
ing the signal phase. In the genetic phase, the function 
of the cells is to create an offspring chromosome from 
two parent chromosomes using crossover and mutation 
masks. 

Reconfiguration is accomplished by loading the con­
figuration data from the DRAM SIMM via the 32-bit 
FPGA data interface. Complete FPGA reconfiguration 
takes less than one millisecond. All 72 FPGAs are re­
configured in parallel. An alternative to reconfiguring 
an FPGA for each operational phase would have been 
implementing more complex CA cells capable offunc­
tioning in all phases. This would have resulted in a sig­
nificantly smaller cellular space fittable into the FPGA. 
The rapid reconfiguration capability of the XC6264 
provided a solution which allows a large number of 
cells with a high functional diversity, in exchange for a 
small additional operation time. This additional time is 
less than 3 seconds per 1000 generations of evolution. 

In addition to the main FPGA array, the CBM uti­
lizes four XC6264 FPGAs for spiketrain buffer logic 
and for a fitness evaluation unit. The fitness evaluation 
unit holds eight separate 24-tap convolution filters for 
output/target spiketrain deviation computation during 
the evolution runs. 

The CBM consists of the following six major blocks: 

1. Cellular Automata Module 
2. GenotypelPhenotype Memory 
3. Fitness Evaluation Unit 
4. Genetic Algorithm Unit 
5. Module Interconnection Memory 
6. External Interface 

Each of these blocks is discussed in detail be­
low, followed by some further architectural points in 
Section 5.3. A summary of CBM capacities can be 
found in Table 1. 

Cellular Automata Module. The cellular automata 
module is the hardware core of the CBM.1t is intended 
to accelerate the speed of brain evolution through a 
highly parallel execution of cellular state updates. The 
CA module consists of an array of identical hardware 
logic circuits or cells arranged as a 3D structure of 
24 x 24 x 24 cells (a total of 13,824 cells). Cells form­
ing the top layer of the module are recurrently con­
nected with the cells in the bottom layer. A similar 
recurrent connection is made between the cells on the 
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Table 1. Summary of CBM technical specifications. 

Cellular automata update rate (max.) 130 billion cells/s 

Cellular automata update rate (min.) 114 billion cells/s 

Number of supported cellular automata cells (max.) 893 million 

Number of supported neurons (max., per module) 1,152 

Number of supported neurons (max., per brain) 74,465,244 

Number of supported neural modules 64,640 

Data flow rate, neuronal level (max.) 13.5 Gbytes/s 

Data flow rate, dendrite level (estimated average) 40.8 Gbytes/s 

Data flow rate, intermodular level (max.) 74 Mbytes/s 

Number of FPGAs 72 

Number of FPGA reconfigurable function units 1,179,648 

Phenotype/genotype memory 1.18 Gbytes 

Chromosome length 91,008 bits 

Power consumption 1.5 KWatt (5 V, 300 A) 

north and south, east and west vertical surfaces. Thus 
a fully recurrent toroidal cube is formed. This feature 
allows a higher axonic and dendritic growth capacity 
by effectively doubling each of the three dimensions of 
the cellular space. 

The CBM hardware core is time-shared between 
multiple modules forming a brain during brain sim­
ulation. Only one module is instantiated at a time. 
The FPGA firmware design is a dual-buffered struc­
ture, which allows simultaneous configuration of the 
next module while the current module is being run (i.e. 
signals are propagated through the dendrites and axons 
between neurons). Thus, the FPGA core is run con­
tinuously without any idle time between modules for 
reconfiguration. 

The surfaces of the cube have external connections 
to provide signal input from other modules. Each sur­
face has a matrix of 64 signals, which is repeated on 
the opposite surface due to wrap around connections. 
Thus, a total of 192 different connections is available. 
Four connections, i.e. one on each of the surfaces, and 
one at one of the 8 corner cells of the cube, are used as 
output points. Due to wrap around, any corner cell has 
3 wrap-around faces, so it is within two cells maximum 
of any other corner cell, including the opposite corner, 
and at the same time equidistant from the three other 
outputs. The fourth output is equivalent to the center 
of the cube, so the set of all 4 outputs looks nice and 
symmetric. 

The CA module is implemented with Xilinx FPGA 
devices XC6264. These devices are fully and partially 
reconfigurable, feature a new co-processor architecture 

124 

with data and address bus access in addition to user in­
puts and outputs, and allow the reading and writing of 
any of the internal flip-flops through the data bus. An 
XC6264 FPGA contains 16,384 logic function cells 
[2], each cell featuring a flip-flop and Boolean logic 
capacity, capable of toggling at a 220 MHz rate. Logic 
cells are interconnected with neighbors at several hier­
archical levels, providing identical propagation delay 
for any length of connection. This feature is very well 
suited for a 3D CA space configuration. Additionally, 
clock routing is optimized for equal propagation time, 
and power distribution is implemented in a redundant 
manner. 

To implement the CA module, a 3D block of identi­
cal logic cells is configured inside each XC6264 device, 
with CoDi specified I-bit signal buses interconnecting 
the cells. Given the FPGA internal routing capabilities 
and the logic capacity needed to implement each cell, 
the optimal arrangement for a XC6264 is 4 x 6 x 8 
(192 cells). This elementary block of cells requires 
208 external connections to form a larger 3D block by 
interconnecting with six neighbor FPGAs on the south, 
north, east, west, top, and bottom sides in a virtual 3D 
space. A total of 72 FPGAs, arranged as a 6 x 4 x 3 
array are used to implement a 24 x 24 x 24 cellular 
cube. 

The CBM implements interconnections between 
72 FPGAs, each placed on a small individual printed 
circuit board, in the form of one large backplane board, 
carrying all 72 FPGA daughter boards. 

The CBM clock rate for cellular update is selected 
between 8.25 MHz, 9.42 MHz, and 11 MHz. At this 
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rate all 13,824 celIs are updated simultaneously, which 
results in the update rate of 114 to 130 billion cells/so 
This rate exceeds the CAM-8 update rate by a factor of 
570 to 650 times. 

Genotype and Phenotype Memory. Each of the 72 
FPGA daughter boards includes 16 Mbytes of EDO 
DRAM to be used for storing the genotypes and phe­
notypes ofthe neural modules, a total of 1,180 Mbytes. 
The genotype is the set of genes in a cell and the phe­
notype is the final product of the genotype, the body 
and behavior that the genotype builds/generates. There 
are two modes of CBM operation, namely evolution 
mode and run mode. The evolution mode involves the 
growth phase and signaling phase. During the growth 
phase, memory is used to store the chromosome bit­
strings of the evolving population of modules (module 
genotypes). For a module of 13,824 cells there are over 
91 Kbits of genotype memory needed. For each module 
the genotype memory also stores information concern­
ing the locations and orientations of the neurons inside 
the module, and their synaptic masks. 

During the run mode, memory is used as a pheno­
type memory for the evolved modules. The phenotype 
data describes the grown axonic and dendritic trees 
and their respective neurons for each module. The 
phenotype data is loaded into the CA module to con­
figure it according to the evolved function. The geno­
type/phenotype memory is used to store and rapidly 
reconfigure (reload) the FPGA hardware CA mod­
ule. Reconfiguration can be performed in parallel with 
running the module, due to a dual pipe lined pheno­
type/genotype register provided in each cell. This guar­
antees the continuous running of the FPGA array at full 
speed with no interruptions for reloading in either evo­
lution or run modes. The phenotype/genotype memory 
can support up to 64,640 interconnected neural mod­
ules at a time. An additional memory will be based 
in the main memory of the host computer (Pentium 
500 MHz) connected to the CBM through a PCI bus, 
capable of transferring data at 132 Mbytes/s. 

Fitness Evaluation Unit. Signaling in the CBM is ac­
complished with I-bit spiketrains, a sequence of ones 
separated by intervals of zeros, similar to those of bi­
ological neural networks. Information, representing 
external stimuli, as well as internal waveforms, is en­
coded in spiketrains using a so-called "Spike Interval 
Information Coding (SIIC)". This method of coding 
is implemented by nature in animal neural networks, 
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and is very efficient in terms of information capacity 
per spike. Conversion from spiketrains into "analog" 
waveforms representing external stimuli, or internal 
signaling, is accomplished by convolving the spike­
train with a special multi-tap linear filter. 

When a module is being evolved, it must be evalu­
ated in terms of it's fitness for a targeted task. During 
the signaling phase, each module receives up to 188 
different spiketrains, and produces up to four different 
output spiketrains, which are compared with a target 
array of spiketrains in order to guide the evolutionary 
process. This comparison gives a measure of perfor­
mance, or fitness, of the module. 

Fitness evaluation is supported by a hardware unit 
which consists of an input spiketrain buffer, a target 
spiketrain buffer, and a fitness evaluator. During each 
clock cycle an input vector is read from its stack and 
fed into the module's inputs. At the same time, a tar­
get vector is read from its buffer to be compared with 
the current module outputs by the evaluator. The fit­
ness evaluator performs a convolution of the spiketrains 
with the convolution filter, and computes the sum of 
the waveform's absolute deviations for the duration of 
the signaling phase. At the end of the signaling phase, 
a final measure of the module's fitness is instantly 
available. 

Genetic Algorithm Unit. To evolve a module, a pop­
ulation of modules is evaluated by computing every 
module's fitness measure, as described above. A sub­
set of the best modules are then selected for further re­
production. In each generation of modules, the best are 
mated and mutated to produce a set of offspring mod­
ules to become the next generation. Mating and muta­
tion is performed by the CBM hardware core at high 
speed, configured for the genetic phase. During this 
phase, each cell's firmware implements crossover and 
mutation masks, two parent registers and an offspring 
register. Thus, each offspring chromosome is gener­
ated in nanoseconds, directly in hardware. Crossover 
is performed in parallel in hardware by all of a module's 
14K CA cells. One crossover act takes about 100 ns for 
two parent chromosomes, each of which is 91 Kbit 
long, using a 91 Kbit crossover mask and a 91 Kbit 
mutation mask. The selection algorithm is performed 
by the host computer in software, using access to the 
CBM via a PCI interface. 

Module Interconnection Memory. In order to sup­
port the run mode of operation, which requires a large 
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number of evolved modules to function as one artificial 
brain, a module interconnection memory is provided. 
Each module can receive inputs from up to 188 other 
modules. A list of these source modules referenced 
to each module is stored in a CBM cross-reference 
memory (3 Mbytes) by the host computer. This list is 
compiled by CBM software using a module intercon­
nection netlist in EDIF format. This netlist reflects the 
module interconnections as designed by the user, using 
off-the-shelf schematic capture tools. 

The length of module interconnections is 96 cells 
(clock cycles). For each of the 64,640 modules, a Signal 
Memory stores up to three 96-bit long output spike­
trains. 

During the run mode, at the time each module of a 
brain is configured in the CA hardware core (by loading 
its phenotype), a signal input buffer is also loaded with 
up to 188 spiketrains according to the netlist in the mod­
ule interconnection memory. The spiketrains are the 
signals saved from the previous instantiation and sig­
naling of the 188 sourcing modules. At the same time, 
the four output spiketrains of the currently instantiated 
module are saved back to the Signal Memory. This 
repetitive cycling through all the modules which form 
the brain, results in a repetitive saving and retrieving 
of the spiketrains to/from the Signal Memory. It pro­
vides the signaling between modules according to 
the brain interconnection structure reflected in the 
schematics, designed by the user. 

In a maximum brain with 64,640 modules, the CBM 
update rate is such that each cell propagates approxi­
mately 288 bit-long spiketrains per second. A 288 bit­
long spiketrain can carryon the order of 72 bytes of 
signal information, using the SHC coding method. 
Each neuron receives up to 5 spiketrains, so there are up 
to 188 million spiketrains being processed by neurons 
in the brain. Thus the maximum information proces­
sing rate by all neurons in the brain is of the order of 
13.5 Gbytes/s. 

Additional spiketrain processing in multiple den­
dritic branches can be estimated by assuming 50% of 
the total cellular space to be occupied by dendrite cells, 
each cell on average having 2.5 branches out of 5 possi­
b�e. Informational throughput of dendrite cells is then 
of the order of 40.8 Gbyte/s. 

External Interface. The CBM architecture can re­
ceive and send spiketrains not only from/to the Signal 
Memory, but also from/to the external CBM interface. 
Any module can receive up to 188 incoming spiketrains 
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and send up to 4 spiketrains to an external device, such 
as a robot, a speech processing system, etc. In a brain 
with 16,384 modules, the information rate, as measured 
at the external interface is up to 4.5 Kbytes/s per each 
module, or up to 74 Mbyte/s overall. In a smaller brain 
with less number of modules, the external information 
rate is higher, for example, a brain with 4,000 mod­
ules provides quadruple the external information rate 
for each module (18 Kbyte/s). 

5.3. Further CBM Architectural Points 

The CBM core is implemented as a large 12-layer 
backplane with 72 FPGA module boards plugged 
in. Each FPGA module board contains one Xilinx 
XC6264 BG560 FPGA, one Xilinx XC95216 BG352 
CPLD, and a 16 Mbyte EDO DRAM module. (Each 
of the 72 FPGAs has a tightly coupled unshared 
16 Mbyte EDO DRAM that it is connected via the 
FastMap interface to the FPGA to provide the fastest 
possible speed for FPGA reconfiguration, as well as 
loading and saving neural module configurations in 
signal and growth phase.) Each FPGA contains 16K 
reconfigurable function units. Memory is used under 
CPLD control to load and save FPGA configurations 
to accomplish time sharing of the fast FPGA hard­
ware. The datapath between memory and an FPGA 
is 32-bits wide and provides a data transfer rate of 
66 Mbyte/s. An FPGA is thermally coupled with a 
temperature sensor circuit which is pre-programmed 
to shut-off the main clock when a temperature limit is 
exceeded. 

The backplane serves primarily as a means to in­
terconnect all 72 FPGAs. Each FPGA has 208 bi­
directional connections to six other FPGAs arranged 
as a three-dimensional array of 6 by 3 by 4 FPGAs. 
In addition, the backplane's opposite side hosts sev­
eral other boards used for overall sequencing and con­
trol of the system, implementing an SIMD (Single 
Instruction Multiple Data) architecture. Overall, there 
are 7.2 million reconfigurable gates in the CBM. To 
accomplish this connectivity, a High Density Metric 
connector system is used with press-fit contacts, pro­
viding over 30,000 connections. 

The CBM is connected as a PCI target to a 
Pentium III computer which initializes the system and 
performs some background auxiliary control. 

Although the CBM has been developed primarily 
to implement a specific neural network model based 
on cellular automata, its architecture is quite universal 
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and very flexible. In fact, the CBM can be used for 
a large variety of applications which benefit from a 
high speed and fast reconfigurability of its hardware. 
Hardware-based implementations of a variety of algo­
rithms have been shown to exceed the computational 
speed of high-cost super computers, as is the case with 
the CAM-Brain algorithm. The maximum computa­
tional power of the CBM is estimated to be equivalent 
to ten thousand Pentium III 500 MHz computers in 
the CAM-Brain algorithm implementation. Since the 
figure of 10,000 may be surprising to some readers, a 
quick justification is given. CBM updates 13,824 cells 
every 106 nanoseconds, or 7.7 picoseconds per cell 
update. An equivalent software algorithm requires 13 
instructions per cell update, each instruction 3 clocks 
on average, with pipelining, a total of 78 nanoseconds 
(for Pentium III 500 MHz). Hence, the ratio is roughly 
10,000. 

In particular, one application supported by the CBM 
architecture is gate-level and function-level evolvable 
hardware, which is based on applying a genetic al­
gorithm to evolve complex digital circuits for a spe­
cific task. With 7.2 million gates, the resulting circuit 
complexity is likely to exceed human ability to design, 
debug, or even understand the dynamics of such a cir­
cuit. The CAM-Brain algorithm itself is an example 
of function-level evolvable hardware, where a basic 
unit of evolution is a function of a cellular automata 
cell, implemented as a specific (non-evolvable) logic 
circuit. This circuit can implement a number of differ­
ent functions selectable by loading a chromosome bit 
string into the cell's genotype register which switches 
the cell to perform a specific function. 

A summary of the CBM technical specifications can 
be found in Table 1. 

6. "Robokoneko", the Kitten Robot 

An artificial brain with nothing to control is rather use­
less, so we chose a controllable object that we thought 
would attract a lot of media attention, i.e. a cute life­
size robot kitten that we call "Robokoneko". We did 
this partly for political and strategic reasons. Brain 
building is still very much in the "proof of concept" 
phase, so we want to show the world something that is 
controlled by an artificial brain, that would not require 
a PhD to understand what it is doing. If the kitten robot 
can perform lots of interesting behaviors, this will be 
obvious to anyone simply by observation. The more 
media attention the kitten robot gets, the more likely 
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Figure 6. "Robokoneko", the life-sized kitten robot to be controlled 
by our artificial brain. 

our brain building work will be funded beyond 200 I 
(the end of our current research project). 

Figure 6 shows the mechanical design our team has 
chosen for the kitten robot. Its total length is about 
25 cms, hence roughly life size. Its torso has two com­
ponents, joined with 2 degrees of freedom (DoF) ar­
ticulation. The back legs have I DoF at the ankle and 
the knee, and 2 DoF at the hip. All 4 feet are spring 
loaded between the heel and toe pad. The front legs 
have 1 DoF at the knee, and 2 DoF at the hip. With 
one mechanical motor per DoF, that makes 14 motors 
for the legs. 2 motors are required for the connection 
between the back and front torso, 3 for the neck, I to 
open and close the mouth, 2 for the tail, I for camera 
zooming, giving a total of 23 motors. 

In order to evolve modules which can control the 
motions of the robot kitten, we thought it would be a 
good idea to feed back the state of each motor (i.e. a 
spiketrain generated from the pulse width modulation 
PWM output value of the motor) into the controlling 
module. Since each module can have up to 188 inputs, 
feeding in these 23 motor state values will be no prob­
lem. We may install acceleromotors and/or gyroscopes 
which may add another 6 or more inputs to each motion 
control module. It can thus be seen that the mechanical 
design of the kitten robot has implications on the de­
sign of the CBM modules. There need to be sufficient 
numbers of inputs for example. 

The motion control modules will not be evolved di­
rectly using the mechanical robot kitten. This would 
be hopelessly slow. Mechanical fitness measurement 
is impractical for our purposes. Instead we will soon be 
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simulating the kitten's motions using an elaborate com­
mercial simulation software package called "Working 
Model-3D". This software will allow output from an 
evolving module to control the simulated motors of the 
simulated kitten. This software simulation approach 
negates to some extent the philosophy of the CAM­
Brain Machine and the CAM-Brain Project, i.e. the 
need for hardware evolution speeds. This compromise 
was felt to be a necessary evil. In practice, the propor­
tion of modules concerned with motion control will be 
very small compared to the total. Potentially, we have 
64K modules to play with. Probably most of them will 
be concerned with pattern recognition, vision, audition, 
etc. and decision making. Designing the kitten robot 
artificial brain remains the greatest research challenge 
of the CAM-Brain Project and will occupy us through 
1999, and beyond. 

Work on the evolution of the motions of the robot kit­
ten has already begun and a journal article on this work 
has been submitted for publication [14]. The strategy 
employed was as follows. The evolution of the kitten's 
behaviors will not occur at electronic speeds. The kit­
ten's motions were simulated with Working Model 3D 
(WM3D) software, which is very elaborate, incorpo­
rating gravity, moments of inertia, frictions, etc. This 
software is used by major companies to simulate their 
new designs before fabrication. Our team wrote a soft­
ware interface to WM3D which allows a genetic algo­
rithm (GA) to be performed on the simulated motions. 
The user can specify a "fitness" (performance criterion) 
definition which is then used to evolve the desired mo­
tion. In practice, this evolution was very slow, taking 
several days per motion. We were thus motivated to 
find ways to accelerate this process. We took several 
options. One was to hand code "ball park" motion 
vectors (of the form of an angular acceleration per mo­
tor per clock tick, for all motors, for a given interval 
of clockticks) for a given desired motion. This hand 
coded ballpark solution served as an initial popUlation 
in the genetic algorithm, and the GA was then used to 
"fine tune" the motion which was often jerky at first. 
Another option is to use a cluster of work stations with 
one GA chromosome (motion vector) per machine, re­
sulting in an Nfold speedup with N machines. Once a 
motion vector is evolved under simulation it becomes 
the target vector that the CBM uses to evolve a cor­
responding module giving the same time dependent 
output. This evolved motion control module (actually 
one module per motor for all motors, in a set we call 
a "cluster") is then downloaded into the RAM of the 
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artificial brain. (At least that is the plan. We have not 
tested this yet.) Evolving motions may be slow, but it is 
a "once off" affair, and although a major compromise 
to the "evolution of neural net modules at electronic 
speeds" philosophy, it is seen as being unavoidable, 
but not a crippling handicap. 

Perhaps some clarification may be useful at this 
point. One may wonder that once the GA-using­
simulation has evolved the needed motion vector, what 
is gained by then evolving a neural net that produces 
this same motion vector, which is, in effect, merely us­
ing the CBM to convert from the motion vector to the 
neural net. This is done for several reasons. One is to 
take advantage of the generalization properties of neu­
ral nets. Another is to have modules that can then be 
run efficiently on the CBM. Thus it may appear that the 
CBM is being used only as a "motion vector to neural 
net converter", and as a runtime environment for the set 
of 1 0,000 s of modules. It appears as though the FPGA 
is not being used for the realleaming. This is true for 
the motion control modules, but is not true for the vast 
majority of modules, such as the aural and visual pat­
tern detector modules, the logic control modules, etc. 
We estimate that the motion control modules will con­
stitute less than a few percent of the total. Since the 
non motion control modules will be evolved directly 
in the CBM, the claim that the (evolutionary) learning 
does not occur in the CBM is not true in most cases. 

We do not know yet how well we can get modules to 
interact together. This question remains unexplored. 
Without a CBM's speed, the evolution and updating 
of many interconnected modules remains impractical. 
No one has tried to build an artificial brain before on 
the scale attempted in this project. Of course, we can 
define an "artificial brain" to be whatever we like 
(in the case of the CAM-Brain project, the definition is 
"an assemblage of evolved CA based neural net mod­
ules"). With the CBM evolving a module in about 1 
second, and with hundreds of evolutionary engineers 
helping out, maybe it is realistic to build an artificial 
brain with 10,000 s of modules in a few years. We don't 
know. That is the research challenge. 

7. A Sampler of CoDi-lBit Evolved 
Neural Net Modules 

Since the whole point of using the CBM is to attain a 
high evolution speed, it is useful if the representation 
chosen to interpret the 1 bit signals which enter and 
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leave the CoDi modules can be unique, otherwise sev­
eral representations would need to be implemented in 
the electronics. (For the CBM to be efficient, i.e. to 
evolve CoDi modules in about 1 second, fitness mea­
surements need to be performed at electronic speeds, 
which implies that the representation chosen for the 
signals be implemented directly in the hardware.) We 
chose the SHC to be our unique representation. How­
ever, as mentioned at the bottom of Section 5, most 
of the evolutionary experiments presented here were 
already undertaken before the SHC representation was 
chosen. Since the results of these earlier experiments 
are interesting in their own right, we report on them 
here. They show to what extent that CoDi modules are 
evolvable and the power of their functionality. The evo­
lution of SHC-representation-based and HSA-based 
modules will be the subject of work in the very near 
future, given that both algorithms are now ready. So 
is the CBM multi-module simulation code, so progress 
should be rather rapid in the coming months prior to 
the delivery of the CBM itself. Once the CBM is de­
livered, multi-module systems should be built as fast 
as we can dream them up. The bottleneck in building 
large scale multi-module systems will become human 
creativity lag, not module evolution lag (as was the case 
with software evolution speeds in the "pre-CBM era".) 
We now provide a sample of evolved CoDi neural net 
modules, their specified functionalities, and their actual 
performances, to give a feel for what they can do. 

7.1. Multiple Timer Module 

Since a 100% fitness score does not test the limits of 
evolvability of a module, a more demanding output 
function was tried. The target output (similar to the 
above pattern) and the actual evolved output (placed 
immediately under the target pattern for comparison) 
were as follows: 

Target 
000000000000000000000000000000 
11111111111111111111 
Evolved 
000000000000000000000000000000 
00011111111111111111 
Target ctd. 
000000000000000000000000 1111111111111111 
00000000000000000000 
Evolved ctd. 
100000000000000000000000 0111111111111111 
10000000000000000000 
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The fitness definition was as follows. If a 0 appeared 
in the first (0) block, score 12 points. If a 1 appeared in 
the second (1) block, score 7 points. If a 0 appeared 
in the third block (0), score 3 points. If a 1 appeared in 
the fourth block (1), score 2 points. If a 0 appeared in 
the fifth block (0), score 1 point. Hence a perfect score 
would be 30 x 12 + 20 x 7 + 24 x 3 + 16 x 2 + 20 
x 1 = 624. These weightings were chosen so as to en­
courage the earlier outputs to be correct before the later 
outputs. Population size was 30. No crossover. This re­
sult converged after 100 generations with a fitness value 
of 0.957. 

It is interesting to note that these good results were 
evolving in 100 generations, and yet the chromosome 
length is very large. The standard CBM chromosome 
length is of the order of 90K bits. One might think that 
such a long chromosome would be very slow in evolv­
ing, but this was not the case. One possible explanation 
for this is that there may be so many possible solutions, 
that (any reasonable) one is quickly found. 

7.2. Pattern Detector Module 

With a slight modification of the code used to evolve 
the above module, a pattern detector module was 
evolved which was capable of distinguishing between 
two square wave inputs, of 111000111000... and 
11111000001111100000 ... In this case, no switch in­
put was used. Two experiments were run. In the first, 
the input was the 6 clocktick cycle square wave input, 
applied at the fixed input point (8, 8,0). In the sec­
ond experiment, the circuit was regrown with the 
same chromosome and the 10 clocktick cycle square 
wave input was applied to the same fixed input point. 
The fitness definition was the same as above. Results 
are shown below. Over 90 clockticks, the first output 
had 48 more 1 s than the second output. 

Square wave input 111000111000 ... 
Output 
000000000000000000000000100110111011111111 
111111111111111111111111111111111111111111 
111111 
Square wave input 11111000001111100000 ... 
Output 
000000000000000000000000000010001000100010 
001000100010001000100010000000000100010001 
00010 

Since the CoDi modules seem capable of evolving 
such detectors, it may be possible to evolve modules 
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which are capable of detecting a specific phoneme ana­
log input (e.g. the spike train (bit string) which when 
convolved with a particular convolution function gives 
the time dependent analog signal). In a manner simi­
lar to the above, one could input the signal in the first 
experiment, and a random signal in the second, in a 
multi-test experiment, and evolve the phoneme detec­
tor. Maybe one could evolve a set of detectors, one 
for each phoneme. By using the SHC and HSA digi­
tal/analog conversions, this kind of thing may become 
quite practical. 

For the evolution of the pattern detector module and 
the module in the next section, the population size was 
15. Fitness values reached saturation after about 200 
generations or less. After the evolution, observation 
of the occupancy of the CA cells showed that most of 
them were filled (more than 95%), with roughly equal 
numbers ofaxons as dendrites, which is to be expected 
given that the initial growth instruction at a neuron's 
face could be an axon or dendrite with a 50/50 chance 
depending on whether a bit was set to 1 or 0 in the 
module's chromosome. Since it took an overnight run 
to evolve a single module, usually only one run was 
undertaken. Once the CBM is functional, more robust 
statistics can be undertaken by averaging over many 
runs. 

7.3. Hubel-Wiesel Line Motion Detector Module 

The results of the following experiment were signifi­
cant for the CAM-Brain Project as a whole, we felt. 
It involved the evolution of a Hubel-Wiesel type line 
motion detector. Hubel and Wiesel won a Nobel prize 
for discovering that certain neural cells in the visual 
region of the cat's brain fired strongly when lines of 
light at particular orientations and speeds were shone 
onto a screen that the cats were observing. These cells 
(neurons) were detecting the motion of lines at a partic­
ular orientation. The evolution of this "Hubel-Wiesel" 
module used the same fitness definition and a similar 
methodology as in the above case. In the first exper­
iment, a square 12 x 12 neuron input grid was used. 
At the first clock tick, the top horizontal 12 neurons 
were made to fire-at the second clock tick, the sec­
ond horizontal row of 12 neurons was made to fire, etc., 
for 12 clock ticks, then the cycle was repeated. This 
input firing pattern simulated the motion of a line of 
light moving horizontally down the visual field on the 
retina of a cat. In the second experiment, 12 randomly 
positioned input neurons were fired at each clock tick. 
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These 12 positions were randomly generated for each 
clock tick. This second input firing pattern simulated 
input noise, to be contrasted with the line motion input. 
Output results are shown below. 

Line Motion Input Case 
Output 
00000000000000000000000010011010011011111 
111111111111111111111111111111111111111111 
1111111 
Random Input Case 
Output 
000000000000000000000000000010000000000000 
000100010101010101010101010101010101010101 
010101 

There were 35 more 1 bit outputs in the first case 
than the second. Since the inputs to the second case are 
positioned randomly, the same neural net module will 
generate a different fitness value depending on the 
input. Nevertheless the evolution still improved over 
time, developing a fairly robust net giving fitness val­
ues corresponding to over 30 I-bit differences (between 
the two experiments) in most cases (e.g. the top 5 fit­
ness chromosomes were saved for each generation and 
not crossed over or mutated. The fitness values (I-bit 
difference count) of these top 5 were 31, 34, 35, 30, 29 
after several hundred generations). Thus it was pos­
sible to evolve a Hubel-Wiesel Line Motion Detector. 
Actually, the statement that it was possible to evolve 
a Hubel-Wieselline motion detector may be disputed 
here. For example, the target function could be stated 
as: "Output 1 if and only if at least one of the horizon­
tal rows of inputs contains all 1 's." This can be done 
with a multi-input AND gate (one neuron perhaps) for 
each row, followed by an OR (one dendrite). A more 
interesting conclusion might be that Hubel-Wiesel type 
systems can be more naturally achieved because of the 
crucial element of spatial layout in the CAM-Brain, as 
distinct from purely topological networks. Of course, 
we have no idea how the circuit does what it does. 
This is the great strength of "evolutionary engineer­
ing". Evol ved circuits can at times achieve performance 
levels beyond what human engineers can achieve with 
traditional top-down design techniques, i.e. attain su­
perior engineering performance levels, but the price 
is that one loses scientific understanding, due to the 
overwhelming structural and dynamical complexity of 
these CoDi circuits. The reason why many evolution­
ary engineers feel that evolutionary engineering can 
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potentially evolve a level of functionality superior to 
what human beings can design, is due to the so-called 
"complexity independence" of the genetic algorithm. 
This notion of complexity independence is informal. 
It means that the GA does not care about the inher­
ent structural and dynamic complexity of the system it 
evolves. All that matters to a GA is that its (scalar) fit­
ness values keep increasing. Hence a GA can evolve an 
extremely complex system (in structure and/or dynam­
ics) which may surpass the complexity level limit that 
a human brain can comprehend. That extra complexity 
can provide an extra level of functionality. This feature 
is thought to be one of the great advantages of evolu­
tionary engineering. Thus "evolutionary engineering" 
can sometimes provide a superior form of engineering. 
In practice, once evolutionary engineers can generate 
tens of thousands, even millions of modules, only a 
few die-hard analysts will want to know how an indi­
vidual module functions. For the most part, no one will 
care how a particular module amongst millions actually 
does what it does. 

8. Ideas for Interesting Future CoDi 
Modules to be Evolved 

8.1. Multi-Test Modules 

The CBM hardware automatically performs a fitness 
measurement on the assumption that the 1 Bit signals 
which leave the evolving module into the fitness mea­
surement circuit are interpreted with the SHC approach, 
i.e. the hardware actually implements the SHC con­
volution algorithm. We have implemented the CBM 
having a single very general fitness measurement 
methodology, to simplify the electronics. Hence evolu­
tionary engineers using the CBM will need to specify 
the functions of the modules they want to evolve using 
the SHC methodology. However, there is a problem 
with this unified approach, namely how to give the 
same circuit several tests, i.e. several sets of different 
inputs in a single run. For example, imagine one aims 
to evolve a module which detects a time dependent in­
put pattern P. One inputs the pattern P for Tp clocks. 
One wants the module to respond strongly when the 
pattern in detected, and weakly if any other pattern is 
presented. Hence the same circuit needs to be tested 
for several pattern inputs, i.e. P and others. The pat­
tern P is called the positive case, while the others are 
called the negative cases. (It is also possible that there 
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may be several positive cases (Pi).) One does not want 
a module which responds well to any pattern. It must 
discriminate. 

How does one test all these cases (positive and nega­
tive) in a single run? By concatenating them, i.e. sand­
wiching them over time. For example, imagine there 
are 2 positive examples and 4 negative examples to be 
input to the same circuit. Hence there will be 6 time 
periods in which the patterns are presented sequentially 
at the input in one long run. Between each input signal 
presentation, the signal states in the circuit are cleared 
out, ready for the next signal input. This the CBM actu­
ally does. This resetting of the signal states is part of the 
CBM fitness measuring approach that we call "multi­
test" fitness measurement. The 6 input pattern periods 
can be represented as "Pj, P2 , N j, N2 , N3, N4". The 
periods last Pi and Ni clock ticks each. So that the 
total number of clock ticks for the positive periods is 
more or less equal to the total of the negative periods, 
the durations of the Pi can be lengthened. This should 
increase the evolvability of the positive responses, oth­
erwise the evolution may favor the negative cases too 
heavily. The target output patterns one wants for these 
6 periods can be represented as "high, high, low, low, 
low, low". 

Clearing the signal states between individual inputs 
in multi-test runs is needed because it is possible that 
self sustaining reverberating loops will be set up once 
an initial input is switched off. Such self sustaining 
loops may in fact be very useful, since they can be 
looked upon as a form of memory, and hence may be 
used to make CoDi modules capable of learning, i.e. 
adapting to their experience. The next subsection elab­
orates on this idea. 

The CBM evaluates each partial fitness (one for each 
test in the multi-test case) and then sums the partial fit­
nesses to getthe total fi tness for the circuit (the module). 

8.2. Modules Which Learn 

Until recently, we have always thought that the CAM­
Brain Project would produce neural circuits that would 
be INcapable of learning, i.e. they would not mod­
ify themselves based on their run time experience. The 
rationale was that it would be complicated enough deal­
ing with tens of thousands of non learning modules all 
interacting with each other, let alone having tens of 
thousands of learnable modules. Also, we saw no way 
of having CoDi modules which could learn. Lately 
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however, we have begun to think that learnable CoDi 
modules might be evolvable. The essence of learning 
in a system is that some event in the past leaves some 
trace or memory in the system. In a CoDi module, that 
could take the form of reverberating internal signaling 
after an initiating input arrives. In some modules, once 
the input stops, the resulting 1 Bit signals could die 
away, i.e. be transient. Alternatively, the reverberat­
ing signals could persist and hence constitute a form of 
memory. Thus CoDi modules may be evolvable which 
generate reverberating signals. 

8.3. From Multi Module Systems to Artificial Brains 

Once our group and others have gained a lot of ex­
perience in evolving single modules, the next obvi­
ous step is to start to design multi-module systems, 
since the ultimate goal of the CAM-Brain Project is 
to put many many modules together (up to 64,460 of 
them in the current design of the CBM) to make artifi­
cial brains. Obviously, no CAM-Brain team will try to 
build a 64k module brain (with maximum 75 million 
artificial neurons) all at once. Instead, as a first step, 
small multi-module systems will be built, with tens of 
modules. Once experience is gained in how to do this 
successfully, larger systems will be undertaken, e.g. 
with 100 s of modules, then 1000 s, and later 10,000 s. 
Note that at the time of writing (Spring 1999) the au­
thors make no pretense of knowing how to design a 
64k module artificial brain. The whole point of the 
CAM-Brain project is to provide a tool which ren­
ders artificial brain building practical. Now that the 
tool exists, it is quite possible that the theory and the 
practice of brain building will advance rapidly. Just 
how to design a module artificial brain remains the ma­
jor research challenge for the authors for the next few 
years. 

Over time, artificial nervous systems should grow 
in complexity, until they can be called artificial brains. 
The robot kitten that our team is currently designing 
will be controlled by an artificial brain with up to 64k 
modules. Since this kitten robot contains a CCD TV 
camera, microphones for ears, touch sensors, 22 motors 
for the legs and body, etc, it should offer plenty of scope 
for brain building. This is a huge amount of work, 
which will need to be distributed over many CAM­
Brain teams across the planet. With modern (almost 
cost free) internet telephone technology, coordinating 
such a large management effort is less expensive. 
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9. Related Work 

This section deals with a sample of research work per­
formed by others, which is related to the CAM-Brain 
Project, the CAM-Brain Machine (CBM), and the kit­
ten robot Robokoneko that our artificial brain will con­
trol. Three aspects of our work have been chosen for 
comparison with comparable work by others, namely, 
the cellular automata machine (CAM) aspect, the run­
time reconfigurable hardware aspect, and the pet robot 
aspect. In each of these three subsections, an initial 
brief summary of the related work is given, followed by 
a comparison with our work. The three related works 
we chose to discuss are: 

(a) Margolus and Toffoli's CAM-8 Cellular Automata 
Machine 

(b) Eldredge and Hutchings' Runtime Reconfigurable 
Neural Net Hardware 

(c) Sony's Pet Dog Robot 'Aibo'. 

9.1. Margolus and Toffoli's CAM-8 Cellular 
Automata Machine 

The Information Mechanics Group at MIT has been 
concerned for the past decade (until they transfered re­
cently to Boston University) with the physics of com­
putation, including such topics as quantum computing, 
crystalline (3D) computing, and the hardware acceler­
ation of cellular automata based modeling. Margolus 
and Toffoli have designed 8 versions of their Cellular 
Automata Machine (CAM) over the years [15]. Our 
group purchased their 8th version CAM-8 in 1994 and 
used it to obtain the graphics of our evolving neural cir­
cuits, some with 10 million artificial neurons. See de 
Garis's home page for these images. The title of our re­
search project, "CAM-Brain Project" was based on the 
idea of putting an artificial brain inside a large cellular 
automata space inside a Cellular Automata Machine, 
hence CAM-Brain. The CAM-8 is essentially a dual 
RAM based lookup table hardware device. A 16 bit 
entry address for the LUT is obtained from the state of 
the central cell at a given position and its 4 neighbors. 
If the maximum number of states is 8, i.e. 3 bits, then 
the 5 states in the order (center, north, east, south, west) 
generate a 15 + 1 bit string (with an extra zero). This 
address points to the next state of the center cell. With 
two such RAM memories, the RAM-l at time T can 
be used to generate the states of the CA space at time 
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T + 1, which are stored in RAM-2. At time T + 1, the 
RAM-2 is used to generate the states of the CA space 
in RAM-I, overwriting the old contents. Thus the two 
RAMs ping-pong, updating each other. This is done at 
a rate of 200 million CA cells a second. 

The CAM-Brain Machine (CBM) is a more spe­
cialized device, devoted to the evolution of CA based 
neural network circuit modules which are downloaded 
into a gigabyte of RAM. Once all the (maximum 64k) 
modules are downloaded, the CBM is used to update 
this space at a rate of 130 billion CA cells a sec­
ond, which is some 650 times faster than the CAM-So 
The CAM-S is a general CA hardware accelerator. 
The CBM is exclusively for neural nets, unless one 
reprograms the FPGAs it contains. The CAM-S has 
been used mainly in applications of CA simulated 
fluid flows, electromagnetic wave simulations etc. The 
CBM has been constructed with the specific aim of 
building artificial brains, although one company, 
Belgium's Lernout and Hauspie (L&H) has bought one 
for speech processing feasibility studies. 

9.2. Eldredge and Hutchings' Runtime 
Reconfigurable Neural Net Hardware 

Eldridge and Hutchings use a run time reconfigurable 
(FPGA) hardware system (called RRANN) to execute 
a backpropagation learning algorithm in a feed for­
ward neural net [16]. They divide the learning task 
into three phases (feed-forward, backpropagation, and 
update), each with its own circuitry, which is config­
ured consecutively into the FPGAs during run time. 
They achieve a greater efficiency in silicon use this 
way, since without the reconfiguration, far more sili­
con would be needed and for most of the time would 
not be used. 

There are several similarities and contrasts which can 
be made between RRANN and the CBM. Both use run 
time reconfiguration, although in the case of RRANN, 
the reconfiguring occurs only twice (between the three 
phases) whereas the CBM is constantly reconfiguring 
its FPGAs into (neural net) growth mode and signaling 
mode, for each generation for hundreds of generations 
in the genetic algorithm. The CBM deals with millions 
of artificial neurons, whereas the RRANN deals with 
far fewer, the nature of the RRANN task being quite 
different. RRANN uses a non evolutionary approach, 
as distinct from the CBM. RRANN limits itself to neu­
ral nets that use feed forward signaling (characteristic 
of the backprop algorithm). CBM uses an evolutionary 
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approach for which the internal complexity of the neu­
ral circuitry that is evolving is irrelevant, and hence can 
be much more complex in its structure and dynamics, 
and hopefully, because of that, more performant than 
feedforward networks. 

9.3. Sony's Pet Dog Robot 'Aibo' 

Our team thought that an artificial brain without a body 
for it to control would be rather useless, so we decided it 
would be a good idea to have it control a cute lifesized 
kitten robot called Robokoneko. However, after we 
conceived Robokoneko, SONY Corporation of Japan, 
unveiled its plans to make a similar robot pet, which 
they eventually called "Aibo" which is Japanese for 
"pal, mate, partner". It is about the size of a living 
Chiwawa dog, whose image can be seen at [17]. It has 
a limited number of behaviors (a dozen or so) which 
include, walking, turning, following and kicking a ball, 
getting on its feet, wagging its tail, etc. It is controlled 
by a few onbody microchips and costs a few thousand 
dollars. 

The kitten robot is rather similar in concept, ex­
cept that it will be controlled by an artificial brain, 
which will be orders of magnitude more sophisticated 
and performant than Aibo's microprocessors. Since the 
first generation artificial brain controlled by CBM-I 
can contain 64k evolved neural net modules, we can 
afford to be ambitious. (We plan by about 2001, to have 
a second generation machine CBM-2, to handle a bil­
lion neuron artificial brain with a million modules, i.e. 
16 times more). We can give the kitten robot hundreds 
of behaviors, thousands of pattern recognizers etc., and 
have it switch between these many behaviors depend­
ing upon its moods, its drives, its internal states (such 
as curiosity, hunger, boredom), its external stimuli etc. 
To the casual observer, the difference in the behavioral 
repertoire and general intelligence levels of Aibo and 
Robokoneko should be marked. However, Robokoneko 
is still a concept, whereas Aibo is already a product, 
due to the greater human resources SONY was able to 
give to its development. Robokoneko is much more 
of a research project, as nobody really understands yet 
how to build an artificial brain. 

10. Conclusions 

This article has provided an overview of ATR's CAM­
Brain Machine (CBM) and the Artificial Brain ("CAM­
Brain") Project of which the CBM is the project's 
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fundamental tool. The CBM should be delivered to 
ATR in the third quarter of 1999. The CBM will up­
date 130 billion 3D CA cells a second and evolve a 
CA based neural net module in about 1 second. This 
speed should make practical the assemblage of tens 
of thousands of evolved neural net modules into hu­
manly defined artificial brain architectures, and hope­
fully create a new research field that we call simply 
"Brain Building". This article has discussed the neu­
ral net model ("CoDi-IBit") which is implemented by 
the CBM. Also presented were discussions on how to 
convert back and forth between analog time dependent 
signals and spiketrains (bit strings of 0 sand 1 s), thus 
enabling users to think entirely in terms of analog input 
and target output signals. A sample of evolved neu­
ral network modules using the CoDi-lBit model was 
given. Once the CBM is delivered and sufficient expe­
rience with it enables the construction of large neural 
systems, with tens of thousands of modules, an artificial 
brain will be designed and built to control the behavior 
of a robot kitten called "Robokoneko". The challenges 
which remain in the CAM-Brain Project are to fully test 
the limits of the evolvability of the CoDi-IBit modules 
(using the CBM), so as to gain experience in what can 
be readily evolved and what cannot, and then to as­
semble large numbers of them to make Robokoneko's 
brain. The biggest challenge will probably be creating 
the brain's architecture, our main task for 1999, and 
beyond. 

The CBM should be fast enough for many multi­
module tests to be undertaken. Multi-module systems 
can be evolved, assembled into the RAM, and then 
tested as a functional unit. Once a system has been 
built successfully it can be used as a component in 
a larger system, ad infinitum. The challenges of the 
CAM-Brain Project are not only conceptual in nature, 
but managerial as well. A back of the envelope calcula­
tion says that if an evolutionary engineer (i.e. someone 
who evolves a neural net module using a CBM) takes 
half an hour of human thinking time to dream up the 
fitness definition (i.e. the performance criterion) of a 
module, to specify the module's input signal(s), its tar­
get output signal, its input and output links with other 
modules, etc., then 8 evolutionary engineers would be 
needed to complete the design of a 64k module arti­
ficial brain within 2 years. Thus one needs to speak 
in terms of brain builder teams. If one wants to be a 
lot more ambitious and build a million module artifi­
cial brain in 2 years, then 120 evolutionary engineers 
are needed. Such a large team would need managers 
to control them. One can imagine higher level "brain 

architects" handing out module specifications to lower 
level evolutionary engineers who actually evolve them 
on their CBMs and report back to the brain architects 
with the results. The brain architects and evolutionary 
engineers need not be located in one place. Modern 
internet telephone technologies, which we use success­
fully on a daily basis, make globally distributed "virtual 
teams" practical. 

If artificial brains can be made to work reasonably 
successfully, e.g. by making interesting robot pets, or 
simple household cleaner robots, etc., then a new artifi­
cial brain based computer industry will probably be cre­
ated. However, this will only be possible if machines 
such as the CBM can deliver sufficient "evolvability" 
to make it happen. By evolvability is meant the degree 
to which some desired functionality is evolvable by a 
given model and implementation. As evolutionary en­
gineers quickly learn, not all neural net modules evolve 
as one would wish. For example, it is quite possible 
that the decision to limit the CaDi model to 1 bit neural 
signaling (in order to implement the model in the 
Xilinx XC6264 chips) has limited the evolvability of 
the CaDi neural net modules. The first author (de 
Garis) evolved neural net modules (in software) with 
8-10 bit neural signals for his PhD a decade ago [18], 
and obtained a remarkable level of evolvability, but 
even then there were limits. Section 7 above has pro­
vided a taste of what CoDi-IBit modules can do. Once 
our team has the CBM, we will be able to broaden 
rapidly our experience in CaDi module evolution and 
hence obtain a feel for its evolvability, within the con­
straints of 1 bit signaling and the CA based neural nets. 
We will then be more able to design an artificial brain 
based on modules that are evolvable in practice. 

As Moore's law provides more powerful evolvable 
chips in future years, later versions of the CBM will 
be able to implement more complex neural net mod­
els, with multi bit signaling, with more realistic neuron 
models, etc., and hence provide a greater level of evolv­
ability, a concept fundamental to the effort of building 
artificial brains. As an example of evolvability, con­
sider the attempt to evolve a module whose output 
should be as close as possible to some time dependent 
wave form. In a recent paper submitted for publica­
tion [19], we evolved a module which followed a sinu­
soidal curve very closely (with 2-5% error) for about 
40 clockticks, and then diverged. We then changed the 
neural net model (in simulation) by adding more bits 
to the model's GA chromosome. The evolved curve 
then followed the target curve for about 80 clocks be­
fore divergence. This increase in the module's "MEC" 
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("Modular Evolvable Capacity") was due presumably 
to the increase in the number of bits in the chromo­
some, giving the module a greater potential to generate 
a desired behavior for longer. Any model with a finite 
number of bits will obviously have a limit to how ex­
tensively it can be evolved to generate some desired 
function. We suspect that this concept of the MEC will 
playa fundamental role in future evolutionary engi­
neering and particularly in brain building. Perhaps by 
combing modules in some way, it may be possible to 
extend the MEC of the whole indefinitely. This remains 
a challenge for future research. We feel that future gen­
erations of the CBM, using future generations of evolv­
able chips, will generate a steady increase in the MECs 
of the modules they evolve. Evolutionary engineers 
should be aware of the limitations of the evolutionary 
approach. They should be conscious of the concept of 
the MEC and the drive to increase their values (e.g. the 
number of clockticks during which the evolved curve 
follows closely the target curve before diverging). 
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